Abstract

Genomic instability is a fundamental feature of human cancer often resulting from impaired genome maintenance. In prostate cancer, structural genomic rearrangements are a common mechanism driving tumorigenesis. However, somatic alterations predisposing to chromosomal rearrangements in prostate cancer remain largely undefined. Here, we show that SPOP, the most commonly mutated gene in primary prostate cancer, modulates DNA double strand break (DSB) repair, and that SPOP mutation is associated with genomic instability. In vivo, SPOP mutation results in a transcriptional response consistent with BRCA1 inactivation resulting in impaired homology-directed repair (HDR) of DSB. Furthermore, we found that SPOP mutation sensitizes to DNA damaging therapeutic agents such as PARP inhibitors. These results implicate SPOP as a novel participant in DSB repair, suggest that SPOP mutation drives prostate tumorigenesis in part through genomic instability, and indicate that mutant SPOP may increase response to DNA damaging therapeutics.

Article and author information

Author details

  1. Gunther Boysen

    Department of Pathologygy and Laboratory Medicine, Weill Cornell Medical College, New York, United Kingdom
    Competing interests
    No competing interests declared.
  2. Christopher E Barbieri

    Department of Urologygy, Weill Cornell Medical College, New York, United States
    Competing interests
    Christopher E Barbieri, A patent (US Patent Application No: 2013/0331,279) has been issued to Weill Medical College of Cornell University on SPOP mutations in prostate cancer; is listed as co-inventor.
  3. Davide Prandi

    Centre for Integrative Biologygy, University of Trento, Trento, Italy
    Competing interests
    No competing interests declared.
  4. Mirjam Blattner

    Department of Pathologygy and Laboratory Medicine, Weill Cornell Medical College, New York, United States
    Competing interests
    No competing interests declared.
  5. Sung-Suk Chae

    Department of Pathologygy and Laboratory Medicine, Weill Cornell Medical College, New York, United States
    Competing interests
    No competing interests declared.
  6. Arun Dahija

    Department of Pathologygy and Laboratory Medicine, Weill Cornell Medical College, New York, United States
    Competing interests
    No competing interests declared.
  7. Srilakshmi Nataraj

    Department of Pathologygy and Laboratory Medicine, Weill Cornell Medical College, New York, United States
    Competing interests
    No competing interests declared.
  8. Dennis Huang

    Department of Pathologygy and Laboratory Medicine, Weill Cornell Medical College, New York, United States
    Competing interests
    No competing interests declared.
  9. Clarisse Marotz

    Department of Pathologygy and Laboratory Medicine, Weill Cornell Medical College, New York, United States
    Competing interests
    No competing interests declared.
  10. Limei Xu

    Department of Pathologygy and Laboratory Medicine, Weill Cornell Medical College, New York, United States
    Competing interests
    No competing interests declared.
  11. Julie Huang

    Department of Pathologygy and Laboratory Medicine, Weill Cornell Medical College, New York, United States
    Competing interests
    No competing interests declared.
  12. Paola Lecca

    Centre for Integrative Biologygy, University of Trento, Trento, Italy
    Competing interests
    No competing interests declared.
  13. Sagar Chhangawala

    Department of Surgery, Weill Cornell Medical College, New York, United States
    Competing interests
    No competing interests declared.
  14. Deli Liu

    Department of Urologygy, Weill Cornell Medical College, New York, United States
    Competing interests
    No competing interests declared.
  15. Pengbo Zhou

    Department of Pathologygy and Laboratory Medicine, Weill Cornell Medical College, New York, United States
    Competing interests
    No competing interests declared.
  16. Andrea Sboner

    Department of Pathologygy and Laboratory Medicine, Weill Cornell Medical College, New York, United States
    Competing interests
    No competing interests declared.
  17. Johann S de Bono

    Division of Clinical Studies, Institute of Cancer Research, London, United Kingdom
    Competing interests
    No competing interests declared.
  18. Francesca Demichelis

    Centre for Integrative Biologygy, University of Trento, Trento, Italy
    Competing interests
    No competing interests declared.
  19. Yariv Houvras

    Department of Surgery, Weill Cornell Medical College, New York, United States
    Competing interests
    No competing interests declared.
  20. Mark A Rubin

    Department of Pathologygy and Laboratory Medicine, Weill Cornell Medical College, New York, United States
    For correspondence
    rubinma@med.cornell.edu
    Competing interests
    Mark A Rubin, A patent (US Patent Application No: 2013/0331,279) has been issued to Weill Medical College of Cornell University on SPOP mutations in prostate cancer; is listed as co-inventor.

Ethics

Animal experimentation: All protocols were performed with prior approval of the WCMC IACUC under protocol 2012-0065.

Copyright

© 2015, Boysen et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 7,207
    views
  • 1,465
    downloads
  • 144
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Gunther Boysen
  2. Christopher E Barbieri
  3. Davide Prandi
  4. Mirjam Blattner
  5. Sung-Suk Chae
  6. Arun Dahija
  7. Srilakshmi Nataraj
  8. Dennis Huang
  9. Clarisse Marotz
  10. Limei Xu
  11. Julie Huang
  12. Paola Lecca
  13. Sagar Chhangawala
  14. Deli Liu
  15. Pengbo Zhou
  16. Andrea Sboner
  17. Johann S de Bono
  18. Francesca Demichelis
  19. Yariv Houvras
  20. Mark A Rubin
(2015)
SPOP mutation leads to genomic instability in prostate cancer
eLife 4:e09207.
https://doi.org/10.7554/eLife.09207

Share this article

https://doi.org/10.7554/eLife.09207

Further reading

    1. Cell Biology
    John H Day, Catherine M Della Santina ... Laurie A Boyer
    Tools and Resources

    Expansion microscopy (ExM) enables nanoscale imaging using a standard confocal microscope through the physical, isotropic expansion of fixed immunolabeled specimens. ExM is widely employed to image proteins, nucleic acids, and lipid membranes in single cells; however, current methods limit the number of samples that can be processed simultaneously. We developed High-throughput Expansion Microscopy (HiExM), a robust platform that enables expansion microscopy of cells cultured in a standard 96-well plate. Our method enables ~4.2 x expansion of cells within individual wells, across multiple wells, and between plates. We also demonstrate that HiExM can be combined with high-throughput confocal imaging platforms to greatly improve the ease and scalability of image acquisition. As an example, we analyzed the effects of doxorubicin, a known cardiotoxic agent, on human cardiomyocytes (CMs) as measured by the Hoechst signal across the nucleus. We show a dose-dependent effect on nuclear DNA that is not observed in unexpanded CMs, suggesting that HiExM improves the detection of cellular phenotypes in response to drug treatment. Our method broadens the application of ExM as a tool for scalable super-resolution imaging in biological research applications.

    1. Cell Biology
    2. Developmental Biology
    Sofía Suárez Freire, Sebastián Perez-Pandolfo ... Mariana Melani
    Research Article

    Eukaryotic cells depend on exocytosis to direct intracellularly synthesized material toward the extracellular space or the plasma membrane, so exocytosis constitutes a basic function for cellular homeostasis and communication between cells. The secretory pathway includes biogenesis of secretory granules (SGs), their maturation and fusion with the plasma membrane (exocytosis), resulting in release of SG content to the extracellular space. The larval salivary gland of Drosophila melanogaster is an excellent model for studying exocytosis. This gland synthesizes mucins that are packaged in SGs that sprout from the trans-Golgi network and then undergo a maturation process that involves homotypic fusion, condensation, and acidification. Finally, mature SGs are directed to the apical domain of the plasma membrane with which they fuse, releasing their content into the gland lumen. The exocyst is a hetero-octameric complex that participates in tethering of vesicles to the plasma membrane during constitutive exocytosis. By precise temperature-dependent gradual activation of the Gal4-UAS expression system, we have induced different levels of silencing of exocyst complex subunits, and identified three temporarily distinctive steps of the regulated exocytic pathway where the exocyst is critically required: SG biogenesis, SG maturation, and SG exocytosis. Our results shed light on previously unidentified functions of the exocyst along the exocytic pathway. We propose that the exocyst acts as a general tethering factor in various steps of this cellular process.