1. Structural Biology and Molecular Biophysics
  2. Evolutionary Biology
Download icon

Large scale determination of previously unsolved protein structures using evolutionary information

  1. Sergey Ovchinnikov
  2. Lisa Kinch
  3. Hahnbeom Park
  4. Yuxing Liao
  5. Jimin Pei
  6. David E Kim
  7. Hetunandan Kamisetty
  8. Nick V Grishin
  9. David Baker  Is a corresponding author
  1. University of Washington, United States
  2. Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, United States
  3. University of Texas Southwestern Medical Center, United States
  4. Facebook Inc., United States
Research Article
  • Cited 138
  • Views 8,856
  • Annotations
Cite this article as: eLife 2015;4:e09248 doi: 10.7554/eLife.09248

Abstract

The prediction of the structures of proteins without detectablesequence similarity to any protein of known structure remains anoutstanding scientific challenge. Here we describe de novo blindstructure predictions of unprecedented accuracy for two proteins in large families made in the recent CASP11 blind test of protein structure prediction methods by incorporating residue-residue co-evolution information in the Rosetta structure prediction program. We then use the method to generate structure models for 58 of the 121 large protein families in prokaryotes for which three dimensionalstructures are not available. These models, which are posted online for public access, provide structural information for the over 400,000 proteins belonging to the 58 families and suggest hypotheses about mechanism for the subset for which the function is known, and hypotheses about function for the remainder.

Article and author information

Author details

  1. Sergey Ovchinnikov

    Department of Biochemistry, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Lisa Kinch

    Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Hahnbeom Park

    Department of Biochemistry, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Yuxing Liao

    Department of Biophysics, Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Jimin Pei

    Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. David E Kim

    Department of Biochemistry, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Hetunandan Kamisetty

    Facebook Inc., Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Nick V Grishin

    Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. David Baker

    Department of Biochemistry, University of Washington, Seattle, United States
    For correspondence
    dabaker@uw.edu
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Yibing Shan, DE Shaw Research, United States

Publication history

  1. Received: June 6, 2015
  2. Accepted: August 30, 2015
  3. Accepted Manuscript published: September 3, 2015 (version 1)
  4. Version of Record published: October 21, 2015 (version 2)

Copyright

© 2015, Ovchinnikov et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 8,856
    Page views
  • 1,954
    Downloads
  • 138
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Structural Biology and Molecular Biophysics
    Achinta Sannigrahi et al.
    Research Article

    Aggregation of Cu-Zn superoxide dismutase (SOD1) is implicated in the motor neuron disease, ALS. Although more than 140 disease mutations of SOD1 are available, their stability or aggregation behaviors in membrane environment are not correlated with disease pathophysiology. Here, we use multiple mutational variants of SOD1 to show that the absence of Zn, and not Cu, significantly impacts membrane attachment of SOD1 through two loop regions facilitating aggregation driven by lipid induced conformational changes. These loop regions influence both the primary (through Cu intake) and the gain of function (through aggregation) of SOD1 presumably through a shared conformational landscape. Combining experimental and theoretical frameworks using representative ALS disease mutants, we develop a 'co-factor derived membrane association model' wherein mutational stress closer to the Zn (but not to the Cu) pocket is responsible for membrane association mediated toxic aggregation and survival time scale after ALS diagnosis.

    1. Microbiology and Infectious Disease
    2. Structural Biology and Molecular Biophysics
    Robert J Nichols et al.
    Research Article

    Prokaryotic nanocompartments, also known as encapsulins, are a recently discovered proteinaceous organelle-like compartments in prokaryotes that compartmentalize cargo enzymes. While initial studies have begun to elucidate the structure and physiological roles of encapsulins, bioinformatic evidence suggests that a great diversity of encapsulin nanocompartments remains unexplored. Here, we describe a novel encapsulin in the freshwater cyanobacterium Synechococcus elongatus PCC 7942. This nanocompartment is upregulated upon sulfate starvation and encapsulates a cysteine desulfurase enzyme via an N-terminal targeting sequence. Using cryo-electron microscopy, we have determined the structure of the nanocompartment complex to 2.2 Å resolution. Lastly, biochemical characterization of the complex demonstrated that the activity of the cysteine desulfurase is enhanced upon encapsulation. Taken together, our discovery, structural analysis, and enzymatic characterization of this prokaryotic nanocompartment provide a foundation for future studies seeking to understand the physiological role of this encapsulin in various bacteria.