TAPBPR alters MHC class I peptide presentation by functioning as a peptide exchange catalyst

  1. Clemens Hermann
  2. Andy van Hateren
  3. Nico Trautwein
  4. Andreas Neerincx
  5. Patrick J Duriez
  6. Stefan Stevanović
  7. John Trowsdale
  8. Janet E Deane
  9. Tim Elliott
  10. Louise H Boyle  Is a corresponding author
  1. University of Cape Town, South Africa
  2. University of Southampton, United Kingdom
  3. Eberhard Karls University Tübingen, Germany
  4. University of Cambridge, United Kingdom

Abstract

Our understanding of the antigen presentation pathway has recently been enhanced with the identification that the tapasin-related protein TAPBPR is a second MHC I-specific chaperone. We sought to determine whether, like tapasin, TAPBPR can also influence MHC I peptide selection by functioning as a peptide exchange catalyst. We show that TAPBPR can catalyse the dissociation of peptides from peptide-MHC I complexes, enhance the loading of peptide-receptive MHC I molecules, and discriminate between peptides based on affinity in vitro. In cells, the depletion of TAPBPR increased the diversity of peptides presented on MHC I molecules, suggesting that TAPBPR is involved in restricting peptide presentation. Our results suggest TAPBPR binds to MHC I in a peptide-receptive state and, like tapasin, works to enhance peptide optimisation. It is now clear there are two MHC class I specific peptide editors, tapasin and TAPBPR, intimately involved in controlling peptide presentation to the immune system.

Article and author information

Author details

  1. Clemens Hermann

    Department of Integrated Biomedical Sciences, Division of Chemical and 20 Systems Biology, Institute for Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
    Competing interests
    The authors declare that no competing interests exist.
  2. Andy van Hateren

    Faculty of Medicine and Institute for Life Science, University of Southampton, Southampton, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Nico Trautwein

    Department of Immunology, Eberhard Karls University Tübingen, Tübingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Andreas Neerincx

    Department of Pathology, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Patrick J Duriez

    Cancer Research UK Protein Core Facility, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Stefan Stevanović

    Department of Immunology, Eberhard Karls University Tübingen, Tübingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. John Trowsdale

    Department of Pathology, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  8. Janet E Deane

    Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  9. Tim Elliott

    Faculty of Medicine and Institute for Life Science, University of Southampton, Southampton, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  10. Louise H Boyle

    Department of Pathology, University of Cambridge, Cambridge, United Kingdom
    For correspondence
    lhb22@cam.ac.uk
    Competing interests
    The authors declare that no competing interests exist.

Copyright

© 2015, Hermann et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,964
    views
  • 738
    downloads
  • 76
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Clemens Hermann
  2. Andy van Hateren
  3. Nico Trautwein
  4. Andreas Neerincx
  5. Patrick J Duriez
  6. Stefan Stevanović
  7. John Trowsdale
  8. Janet E Deane
  9. Tim Elliott
  10. Louise H Boyle
(2015)
TAPBPR alters MHC class I peptide presentation by functioning as a peptide exchange catalyst
eLife 4:e09617.
https://doi.org/10.7554/eLife.09617

Share this article

https://doi.org/10.7554/eLife.09617

Further reading

    1. Cell Biology
    Joan Chang, Adam Pickard ... Karl E Kadler
    Research Article

    Collagen-I fibrillogenesis is crucial to health and development, where dysregulation is a hallmark of fibroproliferative diseases. Here, we show that collagen-I fibril assembly required a functional endocytic system that recycles collagen-I to assemble new fibrils. Endogenous collagen production was not required for fibrillogenesis if exogenous collagen was available, but the circadian-regulated vacuolar protein sorting (VPS) 33b and collagen-binding integrin α11 subunit were crucial to fibrillogenesis. Cells lacking VPS33B secrete soluble collagen-I protomers but were deficient in fibril formation, thus secretion and assembly are separately controlled. Overexpression of VPS33B led to loss of fibril rhythmicity and overabundance of fibrils, which was mediated through integrin α11β1. Endocytic recycling of collagen-I was enhanced in human fibroblasts isolated from idiopathic pulmonary fibrosis, where VPS33B and integrin α11 subunit were overexpressed at the fibrogenic front; this correlation between VPS33B, integrin α11 subunit, and abnormal collagen deposition was also observed in samples from patients with chronic skin wounds. In conclusion, our study showed that circadian-regulated endocytic recycling is central to homeostatic assembly of collagen fibrils and is disrupted in diseases.

    1. Cell Biology
    Chun-Wei Chen, Jeffery B Chavez ... Bruce J Nicholson
    Research Article Updated

    Endometriosis is a debilitating disease affecting 190 million women worldwide and the greatest single contributor to infertility. The most broadly accepted etiology is that uterine endometrial cells retrogradely enter the peritoneum during menses, and implant and form invasive lesions in a process analogous to cancer metastasis. However, over 90% of women suffer retrograde menstruation, but only 10% develop endometriosis, and debate continues as to whether the underlying defect is endometrial or peritoneal. Processes implicated in invasion include: enhanced motility; adhesion to, and formation of gap junctions with, the target tissue. Endometrial stromal (ESCs) from 22 endometriosis patients at different disease stages show much greater invasiveness across mesothelial (or endothelial) monolayers than ESCs from 22 control subjects, which is further enhanced by the presence of EECs. This is due to the enhanced responsiveness of endometriosis ESCs to the mesothelium, which induces migration and gap junction coupling. ESC-PMC gap junction coupling is shown to be required for invasion, while coupling between PMCs enhances mesothelial barrier breakdown.