The molecular mechanism of nuclear transport revealed by atomic scale measurements

  1. Loren E Hough
  2. Kaushik Dutta
  3. Samuel Sparks
  4. Deniz B Temel
  5. Alia Kamal
  6. Jaclyn Tetenbaum-Novatt
  7. Michael P Rout
  8. David Cowburn  Is a corresponding author
  1. The Rockefeller University, United States
  2. New York Structural Biology Center, United States
  3. Albert Einstein College of Medicine, United States

Abstract

Nuclear pore complexes form a selective filter that allows the rapid passage of transport factors (TFs) and their cargoes across the nuclear envelope, while blocking the passage of other macromolecules. Intrinsically disordered proteins (IDPs) containing phenylalanyl-glycyl (FG) rich repeats line the pore and interact with TFs. However, the reason that transport can be both fast and specific remains undetermined, through lack of atomic-scale information on the behavior of FGs and their interaction with TFs. We used NMR spectroscopy to address these issues. We show that FG repeats are highly dynamic IDPs, stabilized by the cellular environment. Fast transport of TFs is supported because the rapid motion of FG motifs allows them to exchange on and off TFs extremely quickly through transient interactions. Because TFs uniquely carry multiple pockets for FG repeats, only they can form the many frequent interactions needed for specific passage between FG repeats to cross the NPC.

Article and author information

Author details

  1. Loren E Hough

    The Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Kaushik Dutta

    New York Structural Biology Center, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Samuel Sparks

    Department of Biochemistry, Albert Einstein College of Medicine, Bronx, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Deniz B Temel

    Department of Biochemistry, Albert Einstein College of Medicine, Bronx, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Alia Kamal

    The Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Jaclyn Tetenbaum-Novatt

    The Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Michael P Rout

    Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. David Cowburn

    Department of Biochemistry, Albert Einstein College of Medicine, The Bronx, United States
    For correspondence
    cowburn@cowburnlab.org
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Volker Dötsch, Goethe University, Germany

Version history

  1. Received: July 11, 2015
  2. Accepted: September 7, 2015
  3. Accepted Manuscript published: September 15, 2015 (version 1)
  4. Accepted Manuscript updated: October 1, 2015 (version 2)
  5. Version of Record published: October 27, 2015 (version 3)

Copyright

© 2015, Hough et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,600
    Page views
  • 989
    Downloads
  • 112
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Loren E Hough
  2. Kaushik Dutta
  3. Samuel Sparks
  4. Deniz B Temel
  5. Alia Kamal
  6. Jaclyn Tetenbaum-Novatt
  7. Michael P Rout
  8. David Cowburn
(2015)
The molecular mechanism of nuclear transport revealed by atomic scale measurements
eLife 4:e10027.
https://doi.org/10.7554/eLife.10027

Share this article

https://doi.org/10.7554/eLife.10027

Further reading

    1. Structural Biology and Molecular Biophysics
    Ekaterina Smirnova, Emmanuelle Bignon ... Adam Ben Shem
    Research Article

    Sirtuin 6 (SIRT6) is an NAD+-dependent histone H3 deacetylase that is prominently found associated with chromatin, attenuates transcriptionally active promoters and regulates DNA repair, metabolic homeostasis and lifespan. Unlike other sirtuins, it has low affinity to free histone tails but demonstrates strong binding to nucleosomes. It is poorly understood how SIRT6 docking on nucleosomes stimulates its histone deacetylation activity. Here, we present the structure of human SIRT6 bound to a nucleosome determined by cryogenic electron microscopy. The zinc finger domain of SIRT6 associates tightly with the acidic patch of the nucleosome through multiple arginine anchors. The Rossmann fold domain binds to the terminus of the looser DNA half of the nucleosome, detaching two turns of the DNA from the histone octamer and placing the NAD+ binding pocket close to the DNA exit site. This domain shows flexibility with respect to the fixed zinc finger and moves with, but also relative to, the unwrapped DNA terminus. We apply molecular dynamics simulations of the histone tails in the nucleosome to show that in this mode of interaction, the active site of SIRT6 is perfectly poised to catalyze deacetylation of the H3 histone tail and that the partial unwrapping of the DNA allows even lysines close to the H3 core to reach the enzyme.

    1. Structural Biology and Molecular Biophysics
    Bernhard Schuster
    Insight

    The surface layer of Sulfolobus acidocaldarius consists of a flexible but stable outer protein layer that interacts with an inner, membrane-bound protein.