The molecular mechanism of nuclear transport revealed by atomic scale measurements

  1. Loren E Hough
  2. Kaushik Dutta
  3. Samuel Sparks
  4. Deniz B Temel
  5. Alia Kamal
  6. Jaclyn Tetenbaum-Novatt
  7. Michael P Rout
  8. David Cowburn  Is a corresponding author
  1. The Rockefeller University, United States
  2. New York Structural Biology Center, United States
  3. Albert Einstein College of Medicine, United States

Abstract

Nuclear pore complexes form a selective filter that allows the rapid passage of transport factors (TFs) and their cargoes across the nuclear envelope, while blocking the passage of other macromolecules. Intrinsically disordered proteins (IDPs) containing phenylalanyl-glycyl (FG) rich repeats line the pore and interact with TFs. However, the reason that transport can be both fast and specific remains undetermined, through lack of atomic-scale information on the behavior of FGs and their interaction with TFs. We used NMR spectroscopy to address these issues. We show that FG repeats are highly dynamic IDPs, stabilized by the cellular environment. Fast transport of TFs is supported because the rapid motion of FG motifs allows them to exchange on and off TFs extremely quickly through transient interactions. Because TFs uniquely carry multiple pockets for FG repeats, only they can form the many frequent interactions needed for specific passage between FG repeats to cross the NPC.

Article and author information

Author details

  1. Loren E Hough

    The Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Kaushik Dutta

    New York Structural Biology Center, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Samuel Sparks

    Department of Biochemistry, Albert Einstein College of Medicine, Bronx, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Deniz B Temel

    Department of Biochemistry, Albert Einstein College of Medicine, Bronx, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Alia Kamal

    The Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Jaclyn Tetenbaum-Novatt

    The Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Michael P Rout

    Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. David Cowburn

    Department of Biochemistry, Albert Einstein College of Medicine, The Bronx, United States
    For correspondence
    cowburn@cowburnlab.org
    Competing interests
    The authors declare that no competing interests exist.

Copyright

© 2015, Hough et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,833
    views
  • 1,016
    downloads
  • 135
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Loren E Hough
  2. Kaushik Dutta
  3. Samuel Sparks
  4. Deniz B Temel
  5. Alia Kamal
  6. Jaclyn Tetenbaum-Novatt
  7. Michael P Rout
  8. David Cowburn
(2015)
The molecular mechanism of nuclear transport revealed by atomic scale measurements
eLife 4:e10027.
https://doi.org/10.7554/eLife.10027

Share this article

https://doi.org/10.7554/eLife.10027

Further reading

    1. Immunology and Inflammation
    2. Structural Biology and Molecular Biophysics
    Colleen A Maillie, Kiana Golden ... Marco Mravic
    Research Article

    A potent class of HIV-1 broadly neutralizing antibodies (bnAbs) targets the envelope glycoprotein’s membrane proximal exposed region (MPER) through a proposed mechanism where hypervariable loops embed into lipid bilayers and engage headgroup moieties alongside the epitope. We address the feasibility and determinant molecular features of this mechanism using multi-scale modeling. All-atom simulations of 4E10, PGZL1, 10E8, and LN01 docked onto HIV-like membranes consistently form phospholipid complexes at key complementarity-determining region loop sites, solidifying that stable and specific lipid interactions anchor bnAbs to membrane surfaces. Ancillary protein-lipid contacts reveal surprising contributions from antibody framework regions. Coarse-grained simulations effectively capture antibodies embedding into membranes. Simulations estimating protein-membrane interaction strength for PGZL1 variants along an inferred maturation pathway show bilayer affinity is evolved and correlates with neutralization potency. The modeling demonstrated here uncovers insights into lipid participation in antibodies’ recognition of membrane proteins and highlights antibody features to prioritize in vaccine design.

    1. Plant Biology
    2. Structural Biology and Molecular Biophysics
    Théo Le Moigne, Martina Santoni ... Julien Henri
    Research Article

    The Calvin-Benson-Bassham cycle (CBBC) performs carbon fixation in photosynthetic organisms. Among the eleven enzymes that participate in the pathway, sedoheptulose-1,7-bisphosphatase (SBPase) is expressed in photo-autotrophs and catalyzes the hydrolysis of sedoheptulose-1,7-bisphosphate (SBP) to sedoheptulose-7-phosphate (S7P). SBPase, along with nine other enzymes in the CBBC, contributes to the regeneration of ribulose-1,5-bisphosphate, the carbon-fixing co-substrate used by ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). The metabolic role of SBPase is restricted to the CBBC, and a recent study revealed that the three-dimensional structure of SBPase from the moss Physcomitrium patens was found to be similar to that of fructose-1,6-bisphosphatase (FBPase), an enzyme involved in both CBBC and neoglucogenesis. In this study we report the first structure of an SBPase from a chlorophyte, the model unicellular green microalga Chlamydomonas reinhardtii. By combining experimental and computational structural analyses, we describe the topology, conformations, and quaternary structure of Chlamydomonas reinhardtii SBPase (CrSBPase). We identify active site residues and locate sites of redox- and phospho-post-translational modifications that contribute to enzymatic functions. Finally, we observe that CrSBPase adopts distinct oligomeric states that may dynamically contribute to the control of its activity.