FAK/PYK2 Promotes the Wnt/B-catenin pathway and intestinal tumorigenesis by phosphorylating GSK3β

  1. Chenxi Gao
  2. Guangming Chen
  3. Shih-Fan Kuan
  4. Dennis Han Zhang
  5. David D Schlaepfer
  6. Jing Hu  Is a corresponding author
  1. University of Pittsburgh School of Medicine, United States
  2. Dietrich School of Arts and Sciences, United States
  3. University of California, San Diego, United States

Abstract

Aberrant activation of Wnt/β-catenin signaling plays an unequivocal role in colorectal cancer, but identification of effective Wnt inhibitors for use in cancer remains a tremendous challenge. New insights into the regulation of this pathway could reveal new therapeutic point of intervention, therefore are greatly needed. Here we report a novel FAK/PYK2/GSK3βY216/β-catenin regulation axis: FAK and PYK2, elevated in adenomas in APCmin/+ mice and in human colorectal cancer tissues, functioned redundantly to promote the Wnt/β-catenin pathway by phosphorylating GSK3βY216 to reinforce pathway output-β-catenin accumulation and intestinal tumorigenesis. We previously showed that Wnt-induced β-catenin accumulation requires Wntinduced GSK3β/β-TrCP interaction; the current study revealed that phosphorylation of GSK3βY216 was a molecular determinant of GSK3β recruitment of β-TrCP. Pharmacological inhibition of FAK/PYK2 suppressed adenoma formation in APCmin/+ mice accompanied with reduced intestinal levels of phospho-SK3βY216 and β-catenin, indicating that FAK/PYK2/GSK3βY216 axis is critical for the activation of Wnt/β-catenin signaling in APCdriven intestinal tumorigenesis.

Article and author information

Author details

  1. Chenxi Gao

    Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Guangming Chen

    Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Shih-Fan Kuan

    Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Dennis Han Zhang

    Dietrich School of Arts and Sciences, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. David D Schlaepfer

    Department of Reproductive Medicine, Moores Cancer Center, University of California, San Diego, San Diego, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Jing Hu

    Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, United States
    For correspondence
    huj3@upmc.edu
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Jonathan A Cooper, Fred Hutchinson Cancer Research Center, United States

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (#14013138) of the University of Pittsburgh.

Version history

  1. Received: July 14, 2015
  2. Accepted: August 11, 2015
  3. Accepted Manuscript published: August 14, 2015 (version 1)
  4. Version of Record published: September 3, 2015 (version 2)

Copyright

© 2015, Gao et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,148
    views
  • 899
    downloads
  • 92
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Chenxi Gao
  2. Guangming Chen
  3. Shih-Fan Kuan
  4. Dennis Han Zhang
  5. David D Schlaepfer
  6. Jing Hu
(2015)
FAK/PYK2 Promotes the Wnt/B-catenin pathway and intestinal tumorigenesis by phosphorylating GSK3β
eLife 4:e10072.
https://doi.org/10.7554/eLife.10072

Share this article

https://doi.org/10.7554/eLife.10072

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Isabelle Petit-Hartlein, Annelise Vermot ... Franck Fieschi
    Research Article

    NADPH oxidases (NOX) are transmembrane proteins, widely spread in eukaryotes and prokaryotes, that produce reactive oxygen species (ROS). Eukaryotes use the ROS products for innate immune defense and signaling in critical (patho)physiological processes. Despite the recent structures of human NOX isoforms, the activation of electron transfer remains incompletely understood. SpNOX, a homolog from Streptococcus pneumoniae, can serves as a robust model for exploring electron transfers in the NOX family thanks to its constitutive activity. Crystal structures of SpNOX full-length and dehydrogenase (DH) domain constructs are revealed here. The isolated DH domain acts as a flavin reductase, and both constructs use either NADPH or NADH as substrate. Our findings suggest that hydride transfer from NAD(P)H to FAD is the rate-limiting step in electron transfer. We identify significance of F397 in nicotinamide access to flavin isoalloxazine and confirm flavin binding contributions from both DH and Transmembrane (TM) domains. Comparison with related enzymes suggests that distal access to heme may influence the final electron acceptor, while the relative position of DH and TM does not necessarily correlate with activity, contrary to previous suggestions. It rather suggests requirement of an internal rearrangement, within the DH domain, to switch from a resting to an active state. Thus, SpNOX appears to be a good model of active NOX2, which allows us to propose an explanation for NOX2’s requirement for activation.

    1. Biochemistry and Chemical Biology
    2. Plant Biology
    Dietmar Funck, Malte Sinn ... Jörg S Hartig
    Research Article

    Metabolism and biological functions of the nitrogen-rich compound guanidine have long been neglected. The discovery of four classes of guanidine-sensing riboswitches and two pathways for guanidine degradation in bacteria hint at widespread sources of unconjugated guanidine in nature. So far, only three enzymes from a narrow range of bacteria and fungi have been shown to produce guanidine, with the ethylene-forming enzyme (EFE) as the most prominent example. Here, we show that a related class of Fe2+- and 2-oxoglutarate-dependent dioxygenases (2-ODD-C23) highly conserved among plants and algae catalyze the hydroxylation of homoarginine at the C6-position. Spontaneous decay of 6-hydroxyhomoarginine yields guanidine and 2-aminoadipate-6-semialdehyde. The latter can be reduced to pipecolate by pyrroline-5-carboxylate reductase but more likely is oxidized to aminoadipate by aldehyde dehydrogenase ALDH7B in vivo. Arabidopsis has three 2-ODD-C23 isoforms, among which Din11 is unusual because it also accepted arginine as substrate, which was not the case for the other 2-ODD-C23 isoforms from Arabidopsis or other plants. In contrast to EFE, none of the three Arabidopsis enzymes produced ethylene. Guanidine contents were typically between 10 and 20 nmol*(g fresh weight)-1 in Arabidopsis but increased to 100 or 300 nmol*(g fresh weight)-1 after homoarginine feeding or treatment with Din11-inducing methyljasmonate, respectively. In 2-ODD-C23 triple mutants, the guanidine content was strongly reduced, whereas it increased in overexpression plants. We discuss the implications of the finding of widespread guanidine-producing enzymes in photosynthetic eukaryotes as a so far underestimated branch of the bio-geochemical nitrogen cycle and propose possible functions of natural guanidine production.