Paternally expressed imprinted genes establish postzygotic hybridization barriers in Arabidopsis thaliana

  1. Philip Wolff
  2. Hua Jiang
  3. Guifeng Wang
  4. Juan Santos-González
  5. Claudia Köhler  Is a corresponding author
  1. Swiss Federal Institute of Technology, Switzerland
  2. Swedish University of Agricultural Sciences, Sweden

Abstract

Genomic imprinting is an epigenetic phenomenon causing parent-of-origin specific differential expression of maternally and paternally inherited alleles. While many imprinted genes have been identified in plants, the functional roles of most of them are unknown. In this study, we systematically examine the functional requirement of paternally expressed imprinted genes (PEGs) during seed development in Arabidopsis thaliana. While none of the 15 analyzed peg mutants has qualitative or quantitative abnormalities of seed development, we identify three PEGs that establish postzygotic hybridization barriers in the endosperm, revealing that PEGs have a major role as speciation genes in plants. Our work reveals that a subset of PEGs maintains functional roles in the inbreeding plant Arabidopsis that become evident upon deregulated expression.

Article and author information

Author details

  1. Philip Wolff

    Department of Biology and Zurich-Basel Plant Science Center, Swiss Federal Institute of Technology, Zurich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  2. Hua Jiang

    Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  3. Guifeng Wang

    Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  4. Juan Santos-González

    Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  5. Claudia Köhler

    Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, Sweden
    For correspondence
    claudia.kohler@slu.se
    Competing interests
    The authors declare that no competing interests exist.

Copyright

© 2015, Wolff et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,723
    views
  • 937
    downloads
  • 97
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Philip Wolff
  2. Hua Jiang
  3. Guifeng Wang
  4. Juan Santos-González
  5. Claudia Köhler
(2015)
Paternally expressed imprinted genes establish postzygotic hybridization barriers in Arabidopsis thaliana
eLife 4:e10074.
https://doi.org/10.7554/eLife.10074

Share this article

https://doi.org/10.7554/eLife.10074

Further reading

    1. Developmental Biology
    Martina Jabloñski, Guillermina M Luque ... Mariano G Buffone
    Research Article

    Mammalian sperm delve into the female reproductive tract to fertilize the female gamete. The available information about how sperm regulate their motility during the final journey to the fertilization site is extremely limited. In this work, we investigated the structural and functional changes in the sperm flagellum after acrosomal exocytosis (AE) and during the interaction with the eggs. The evidence demonstrates that the double helix actin network surrounding the mitochondrial sheath of the midpiece undergoes structural changes prior to the motility cessation. This structural modification is accompanied by a decrease in diameter of the midpiece and is driven by intracellular calcium changes that occur concomitant with a reorganization of the actin helicoidal cortex. Midpiece contraction occurs in a subset of cells that undergo AE, and live-cell imaging during in vitro fertilization showed that the midpiece contraction is required for motility cessation after fusion is initiated. These findings provide the first evidence of the F-actin network’s role in regulating sperm motility, adapting its function to meet specific cellular requirements during fertilization, and highlighting the broader significance of understanding sperm motility.

    1. Developmental Biology
    Maarten F Zwart
    Insight

    New research shows that the neural circuit responsible for stabilising gaze can develop in the absence of motor neurons, contrary to a long-standing model in the field.