Aging: Stressing about misplaced fat is a key to longevity
Germ line tissue – the tissue that produces egg and sperm cells – is known to influence the lifespans of several animal species (Kenyon, 2010). For example, removing this tissue from the gonads of the worm Caenorhabditis elegans extends the lifespans of hermaphrodite individuals by about 60%. However, this effect is not due to the loss of fertility because the removal of the entire gonad, which includes both the germ line and the ‘somatic’ gonad, does not alter the worm's lifespan (Hsin and Kenyon, 1999).
The prevailing interpretation of these findings is that the gonad must produce signals that increase or reduce lifespan. As such, the hunt has been on to identify these ‘aging’ signals. Now, in eLife, Keith Blackwell and colleagues at the Joslin Diabetes Centre – including Michael Steinbaugh as first author – report that the increase in lifespan is the consequence of the stress response that is initiated upon the abnormal accumulation of lipids after the germ line cells are removed (Steinbaugh et al., 2015).
This work was performed on worms that lacked the stem cells that become eggs and sperm cells (Hubbard, 2007). In addition to living longer than normal worms, these glp-1 mutants exhibit elevated levels of stress resistance and other processes associated with increases in lifespan in other animals. They also have higher levels of lipids, leading to the idea that the extended lifespan is due to the accumulation of beneficial lipids (Ackerman and Gems, 2012; Lapierre and Hansen, 2012).
Steinbaugh et al. investigated the role of SKN-1 – a transcription factor that is involved in stress resistance, metabolism and lifespan extension in many animal species – in glp-1 mutant worms. They found that a deficiency in germ line cells leads to the activation of SKN-1 and that this activity is required for the increase in lifespan. By profiling the changes in gene expression caused by germ line deficiency, they demonstrated that SKN-1 influences the expression of genes that have roles in stress resistance, protein homeostasis and lipid metabolism.
The study also shows that, in glp-1 mutants, an unsaturated fatty acid called oleic acid, or a related metabolite, acts as a signal that leads to the activation of SKN-1. Similarly, a metabolite of oleic acid was recently shown to promote the activities of two other transcription factors called NHR-80 and NHR-49 (Folick et al., 2015). These transcription factors are also required for the extended lifespan of glp-1 mutants (Goudeau et al., 2011; Ratnappan et al., 2014).
So, are these lipids elixirs of longevity? A provocative answer provided by Steinbaugh et al. is that glp-1 mutants are fat because they accumulate excessive quantities of yolk, which transports nutrients from the intestine to the egg cells in the germ line tissue. Yolk particles – which are made of lipids and proteins – are produced in intestinal cells, secreted and then taken up by the developing egg cells (Grant and Hirsh, 1999; Figure 1). As an individual C. elegans hermaphrodite is capable of producing its body weight in progeny every day, any changes to the flow of yolk particles to the germ line tissue can dominate the overall fat content of the organism. In the glp-1 mutants, the intestinal cells continue to produce copious amounts of yolk, which accumulates due to the lack of germ line cells (Figure 1).
Significantly, Steinbaugh et al. showed that animals lacking germ line cells and SKN-1 accumulate even more fat, consistent with this protein having a role in upregulating the mechanisms that burn fat. As such, the activation of SKN-1 in animals lacking germ line cells helps to reduce the burden caused by the excess lipids and the resulting accumulation of yolk (Figure 1). In the process of dealing with the stress of elevated lipid levels, animals turn on molecular mechanisms that extend lifespan.
These findings indicate that the longevity of glp-1 animals is not a simple consequence of the accumulation of beneficial fats; rather, it is provoked by the inappropriate distribution of yolk in tissues. However, this study, does not rule out the possibility that the gonad sends out additional signals that influence lifespan.
By revealing that the excess lipids in glp-1 mutants are likely due to the accumulation of yolk, the work of Steinbaugh et al. starts to address another conundrum: many of the changes in gene expression that are activated in the glp-1 mutants (and are required for the longevity of the mutants) can also be activated by nutrient deprivation in wildtype worms. This suggests that while the yolk and stored lipids are chemically and biologically related, they have different functions and should not be treated as a single entity, as most studies of C. elegans fat content currently do. Finally, given the similarities between the C. elegans intestine and the mammalian liver, the results of this study also suggest that the mammalian equivalents of SKN-1, the Nrf transcription factors, may limit susceptibility to non-alcoholic fatty liver disease in a similar way.
References
-
Receptor-mediated endocytosis in the Caenorhabditis elegans oocyteMolecular Biology of the Cell 10:4311–4326.https://doi.org/10.1091/mbc.10.12.4311
-
Caenorhabditis elegans germ line: a model for stem cell biologyDevelopmental Dynamics 236:3343–3357.https://doi.org/10.1002/dvdy.21335
-
Lessons from C. elegans: signaling pathways for longevityTrends in Endocrinology and Metabolism 23:637–644.https://doi.org/10.1016/j.tem.2012.07.007
Article and author information
Author details
Publication history
Copyright
© 2015, Lemieux and Ashrafi
This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 2,199
- views
-
- 300
- downloads
-
- 3
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Cell Biology
Endometriosis is a debilitating disease affecting 190 million women worldwide and the greatest single contributor to infertility. The most broadly accepted etiology is that uterine endometrial cells retrogradely enter the peritoneum during menses, implant and form invasive lesions in a process analogous to cancer metastasis. However, over 90% of women suffer retrograde menstruation, but only 10% develop endometriosis, and debate continues as to whether the underlying defect is endometrial or peritoneal. Processes implicated in invasion include: enhanced motility; adhesion to, and formation of gap junctions with, the target tissue. Endometrial stromal (ESCs) from 22 endometriosis patients at different disease stages show much greater invasiveness across mesothelial (or endothelial) monolayers than ESCs from 22 control subjects, which is further enhanced by the presence of EECs. This is due to enhanced responsiveness of endometriosis ESCs to the mesothelium, which induces migration and gap junction coupling. ESC-PMC gap junction coupling is shown to be required for invasion, while coupling between PMCs enhances mesothelial barrier breakdown.
-
- Cell Biology
How the fate (folding versus degradation) of glycoproteins is determined in the endoplasmic reticulum (ER) is an intriguing question. Monoglucosylated glycoproteins are recognized by lectin chaperones to facilitate their folding, whereas glycoproteins exposing well-trimmed mannoses are subjected to glycoprotein ER-associated degradation (gpERAD); we have elucidated how mannoses are sequentially trimmed by EDEM family members (George et al., 2020; 2021 eLife). Although reglucosylation by UGGT was previously reported to have no effect on substrate degradation, here we directly tested this notion using cells with genetically disrupted UGGT1/2. Strikingly, the results showed that UGGT1 delayed the degradation of misfolded substrates and unstable glycoproteins including ATF6α. An experiment with a point mutant of UGGT1 indicated that the glucosylation activity of UGGT1 was required for the inhibition of early glycoprotein degradation. These and overexpression-based competition experiments suggested that the fate of glycoproteins is determined by a tug-of-war between structure formation by UGGT1 and degradation by EDEMs. We further demonstrated the physiological importance of UGGT1, since ATF6α cannot function properly without UGGT1. Thus, our work strongly suggests that UGGT1 is a central factor in ER protein quality control via the regulation of both glycoprotein folding and degradation.