Tumor microenvironment derived exosomes pleiotropically modulate cancer cell metabolism

  1. Hongyun Zhao
  2. Lifeng Yang
  3. Joelle Baddour
  4. Abhinav Achreja
  5. Vincent Bernard
  6. Tyler Moss
  7. Juan Marini
  8. Thavisha Tudawe
  9. Elena G Seviour
  10. F Anthony San Lucas
  11. Hector Alvarez
  12. Sonal Gupta
  13. Sourindra N Maiti
  14. Laurence Cooper
  15. Donna Peehl
  16. Prahlad T Ram
  17. Anirban Maitra
  18. Deepak Nagrath  Is a corresponding author
  1. Rice University, United States
  2. University of Texas MD Anderson Cancer Center, United States
  3. University of Texas, MD Anderson, United States
  4. Baylor College of Medicine, United States
  5. Departments of Pathology and Translational Molecular Pathology, Ahmad Center for Pancreatic Cancer Research, United States
  6. Stanford University, United States

Abstract

Cancer-associated fibroblasts (CAFs) are a major cellular component of tumor microenvironment in most solid cancers. Altered cellular metabolism is a hallmark of cancer, and much of the published literature has focused on neoplastic cell-autonomous processes for these adaptations. We demonstrate that exosomes secreted by patient-derived CAFs can strikingly reprogram the metabolic machinery following their uptake by cancer cells. We find that CAF-derived exosomes (CDEs) inhibit mitochondrial oxidative phosphorylation, thereby increasing glycolysis and glutamine-dependent reductive carboxylation in cancer cells. Through 13C-labeled isotope labeling experiments we elucidate that exosomes supply amino acids to nutrient-deprived cancer cells in a mechanism similar to macropinocytosis, albeit without the previously described dependence on oncogenic-Kras signaling. Using intra-exosomal metabolomics, we provide compelling evidence that CDEs contain intact metabolites, including amino acids, lipids, and TCA-cycle intermediates that are avidly utilized by cancer cells for central carbon metabolism and promoting tumor growth under nutrient deprivation or nutrient stressed conditions.

Article and author information

Author details

  1. Hongyun Zhao

    Laboratory for Systems Biology of Human Diseases, Rice University, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Lifeng Yang

    Laboratory for Systems Biology of Human Diseases, Rice University, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Joelle Baddour

    Laboratory for Systems Biology of Human Diseases, Rice University, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Abhinav Achreja

    Laboratory for Systems Biology of Human Diseases, Rice University, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Vincent Bernard

    Departments of Pathology and Translational Molecular Pathology, Ahmad Center for Pancreatic Cancer Research, University of Texas MD Anderson Cancer Center, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Tyler Moss

    Department of Systems Biology, University of Texas, MD Anderson, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Juan Marini

    Baylor College of Medicine, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Thavisha Tudawe

    Department of Chemical and Biomolecular engineering, Rice University, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Elena G Seviour

    Department of Systems Biology, University of Texas, MD Anderson, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. F Anthony San Lucas

    Departments of Pathology and Translational Molecular Pathology, Ahmad Center for Pancreatic Cancer Research, University of Texas MD Anderson Cancer Center, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Hector Alvarez

    Departments of Pathology and Translational Molecular Pathology, Departments of Pathology and Translational Molecular Pathology, Ahmad Center for Pancreatic Cancer Research, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Sonal Gupta

    Departments of Pathology and Translational Molecular Pathology, Ahmad Center for Pancreatic Cancer Research, University of Texas MD Anderson Cancer Center, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Sourindra N Maiti

    Department of Pediatrics, University of Texas MD Anderson Cancer Center, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. Laurence Cooper

    Department of Pediatrics, University of Texas MD Anderson Cancer Center, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  15. Donna Peehl

    Department of Urology, School of Medicine, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  16. Prahlad T Ram

    Department of Systems Biology, University of Texas, MD Anderson, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  17. Anirban Maitra

    Departments of Pathology and Translational Molecular Pathology, Ahmad Center for Pancreatic Cancer Research, University of Texas MD Anderson Cancer Center, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  18. Deepak Nagrath

    Laboratory for Systems Biology of Human Diseases, Rice University, Houston, United States
    For correspondence
    dn7@rice.edu
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Chi Van Dang, University of Pennsylvania, United States

Publication history

  1. Received: July 21, 2015
  2. Accepted: February 26, 2016
  3. Accepted Manuscript published: February 27, 2016 (version 1)
  4. Version of Record published: April 13, 2016 (version 2)

Copyright

© 2016, Zhao et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 18,102
    Page views
  • 6,059
    Downloads
  • 511
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Hongyun Zhao
  2. Lifeng Yang
  3. Joelle Baddour
  4. Abhinav Achreja
  5. Vincent Bernard
  6. Tyler Moss
  7. Juan Marini
  8. Thavisha Tudawe
  9. Elena G Seviour
  10. F Anthony San Lucas
  11. Hector Alvarez
  12. Sonal Gupta
  13. Sourindra N Maiti
  14. Laurence Cooper
  15. Donna Peehl
  16. Prahlad T Ram
  17. Anirban Maitra
  18. Deepak Nagrath
(2016)
Tumor microenvironment derived exosomes pleiotropically modulate cancer cell metabolism
eLife 5:e10250.
https://doi.org/10.7554/eLife.10250
  1. Further reading

Further reading

    1. Cell Biology
    Gina M LoMastro et al.
    Research Article

    Multiciliated cells (MCCs) are terminally differentiated epithelia that assemble multiple motile cilia used to promote fluid flow. To template these cilia, MCCs dramatically expand their centriole content during a process known as centriole amplification. In cycling cells, the master regulator of centriole assembly Polo-like kinase 4 (PLK4) is essential for centriole duplication; however recent work has questioned the role of PLK4 in centriole assembly in MCCs. To address this discrepancy, we created genetically engineered mouse models and demonstrated that both PLK4 protein and kinase activity are critical for centriole amplification in MCCs. Tracheal epithelial cells that fail centriole amplification accumulate large assemblies of centriole proteins and do not undergo apical surface area expansion. These results show that the initial stages of centriole assembly are conserved between cycling cells and MCCs and suggest that centriole amplification and surface area expansion are coordinated events.

    1. Cell Biology
    Jin Wang et al.
    Research Article Updated

    Megakaryocytes (MKs) continuously produce platelets to support hemostasis and form a niche for hematopoietic stem cell maintenance in the bone marrow. MKs are also involved in inflammatory responses; however, the mechanism remains poorly understood. Using single-cell sequencing, we identified a CXCR4 highly expressed MK subpopulation, which exhibited both MK-specific and immune characteristics. CXCR4high MKs interacted with myeloid cells to promote their migration and stimulate the bacterial phagocytosis of macrophages and neutrophils by producing TNFα and IL-6. CXCR4high MKs were also capable of phagocytosis, processing, and presenting antigens to activate T cells. Furthermore, CXCR4high MKs also egressed circulation and infiltrated into the spleen, liver, and lung upon bacterial infection. Ablation of MKs suppressed the innate immune response and T cell activation to impair the anti-bacterial effects in mice under the Listeria monocytogenes challenge. Using hematopoietic stem/progenitor cell lineage-tracing mouse lines, we show that CXCR4high MKs were generated from infection-induced emergency megakaryopoiesis in response to bacterial infection. Overall, we identify the CXCR4high MKs, which regulate host-defense immune response against bacterial infection.