Trogocytosis-associated cell to cell spread of intracellular bacterial pathogens

  1. Shaun Steele
  2. Lauren Radlinski
  3. Sharon Taft-Benz
  4. Brunton Jason
  5. Thomas H Kawula  Is a corresponding author
  1. University of North Carolina at Chapel Hill, United States

Abstract

Macrophages are myeloid-derived phagocytic cells and one of the first immune cell types to respond to microbial infections. However, a number of bacterial pathogens are resistant to the antimicrobial activities of macrophages and can grow within these cells. Macrophages have other immune surveillance roles including the acquisition of cytosolic components from multiple types of cells. We hypothesized that intracellular pathogens that can replicate within macrophages could also exploit cytosolic transfer to facilitate bacterial spread. We found that viable Francisella tularensis, as well as Salmonella enterica bacteria transferred from infected cells to uninfected macrophages along with other cytosolic material through a transient, contact dependent mechanism. Bacterial transfer occurred when the host cells exchanged plasma membrane proteins and cytosol via a trogocytosis related process leaving both donor and recipient cells intact and viable. Trogocytosis was strongly associated with infection in mice, suggesting that direct bacterial transfer occurs by this process in vivo.

Article and author information

Author details

  1. Shaun Steele

    University of North Carolina at Chapel Hill, Chapel Hill, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Lauren Radlinski

    University of North Carolina at Chapel Hill, Chapel Hill, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Sharon Taft-Benz

    University of North Carolina at Chapel Hill, Chapel Hill, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Brunton Jason

    University of North Carolina at Chapel Hill, Chapel Hill, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Thomas H Kawula

    University of North Carolina at Chapel Hill, Chapel Hill, United States
    For correspondence
    kawula@med.unc.edu
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (#13-213.0) of the University of North Carolina.

Copyright

© 2016, Steele et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,817
    views
  • 1,249
    downloads
  • 62
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Shaun Steele
  2. Lauren Radlinski
  3. Sharon Taft-Benz
  4. Brunton Jason
  5. Thomas H Kawula
(2016)
Trogocytosis-associated cell to cell spread of intracellular bacterial pathogens
eLife 5:e10625.
https://doi.org/10.7554/eLife.10625

Share this article

https://doi.org/10.7554/eLife.10625

Further reading

    1. Immunology and Inflammation
    2. Microbiology and Infectious Disease
    Emilie Bourdonnay, Thomas Henry
    Insight

    Direct contact between host cells allows some bacteria to spread within the body without being attacked by the immune system.

    1. Immunology and Inflammation
    Xiaoyu Meng, Yezhang Zhu ... Lie Wang
    Research Article

    FOXP3-expressing regulatory T (Treg) cells play a pivotal role in maintaining immune homeostasis and tolerance, with their activation being crucial for preventing various inflammatory responses. However, the mechanisms governing the epigenetic program in Treg cells during their dynamic activation remain unclear. In this study, we demonstrate that CXXC-finger protein 1 (CXXC1) interacts with the transcription factor FOXP3 and facilitates the regulation of target genes by modulating H3K4me3 deposition. Cxxc1 deletion in Treg cells leads to severe inflammatory disease and spontaneous T cell activation, with impaired immunosuppressive function. As a transcriptional regulator, CXXC1 promotes the expression of key Treg functional markers under steady-state conditions, which are essential for the maintenance of Treg cell homeostasis and their suppressive functions. Epigenetically, CXXC1 binds to the genomic regulatory regions of Treg program genes in mouse Treg cells, overlapping with FOXP3-binding sites. Given its critical role in Treg cell homeostasis, CXXC1 presents itself as a promising therapeutic target for autoimmune diseases.