The evolution of distributed sensing and collective computation in animal populations

  1. Andrew M Hein  Is a corresponding author
  2. Sara Brin Rosenthal
  3. George I Hagstrom
  4. Andrew Berdahl
  5. Colin J Torney
  6. Iain D Couzin
  1. Princeton University, United States
  2. Santa Fe Institute, United States
  3. University of Exeter, Cornwall Campus, United Kingdom
  4. Max Planck Institute for Ornithology, Germany

Abstract

Many animal groups exhibit rapid, coordinated collective motion. Yet, the evolutionary forces that cause such collective responses to evolve are poorly understood. Here we develop analytical methods and evolutionary simulations based on experimental data from schooling fish. We use these methods to investigate how populations evolve within unpredictable, time-varying resource environments. We show that populations evolve toward a distinctive regime in behavioral phenotype space, where small responses of individuals to local environmental cues cause spontaneous changes in the collective state of groups. These changes resemble phase transitions in physical systems. Through these transitions, individuals evolve the emergent capacity to sense and respond to resource gradients (i.e. individuals perceive gradients via social interactions, rather than sensing gradients directly), and to allocate themselves among distinct, distant resource patches. Our results yield new insight into how natural selection, acting on selfish individuals, results in the highly effective collective responses evident in nature.

Article and author information

Author details

  1. Andrew M Hein

    Department of Ecology and Evolutionary Biology, Princeton University, Princeton, United States
    For correspondence
    ahein@princeton.edu
    Competing interests
    No competing interests declared.
  2. Sara Brin Rosenthal

    Department of Physics, Princeton University, Princeton, United States
    Competing interests
    No competing interests declared.
  3. George I Hagstrom

    Department of Ecology and Evolutionary Biology, Princeton University, Princeton, United States
    Competing interests
    No competing interests declared.
  4. Andrew Berdahl

    Santa Fe Institute, Santa Fe, United States
    Competing interests
    No competing interests declared.
  5. Colin J Torney

    Centre for Mathematics and the Environment, University of Exeter, Cornwall Campus, Penryn, United Kingdom
    Competing interests
    No competing interests declared.
  6. Iain D Couzin

    Department of Collective Behaviour, Max Planck Institute for Ornithology, Konstanz, Germany
    Competing interests
    Iain D Couzin, Reviewing editor, eLife.

Reviewing Editor

  1. Michael Doebeli, University of British Columbia, Canada

Publication history

  1. Received: August 20, 2015
  2. Accepted: November 1, 2015
  3. Accepted Manuscript published: December 10, 2015 (version 1)
  4. Accepted Manuscript updated: December 17, 2015 (version 2)
  5. Version of Record published: February 3, 2016 (version 3)

Copyright

© 2015, Hein et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,362
    Page views
  • 731
    Downloads
  • 52
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Andrew M Hein
  2. Sara Brin Rosenthal
  3. George I Hagstrom
  4. Andrew Berdahl
  5. Colin J Torney
  6. Iain D Couzin
(2015)
The evolution of distributed sensing and collective computation in animal populations
eLife 4:e10955.
https://doi.org/10.7554/eLife.10955
  1. Further reading

Further reading

    1. Ecology
    2. Evolutionary Biology
    Julian Melgar, Mads F Schou ... Charlie K Cornwallis
    Research Article

    Cooperative breeding allows the costs of parental care to be shared, but as groups become larger, such benefits often decline as competition increases and group cohesion breaks down. The counteracting forces of cooperation and competition are predicted to select for an optimal group size, but variation in groups is ubiquitous across cooperative breeding animals. Here, we experimentally test if group sizes vary because of sex differences in the costs and benefits of cooperative breeding in captive ostriches, Struthio camelus, and compare this to the distribution of group sizes in the wild. We established 96 groups with different numbers of males (1 or 3) and females (1, 3, 4, or 6) and manipulated opportunities for cooperation over incubation. There was a clear optimal group size for males (one male with four or more females) that was explained by high costs of competition and negligible benefits of cooperation. Conversely, female reproductive success was maximised across a range of group sizes due to the benefits of cooperation with male and female group members. Reproductive success in intermediate sized groups was low for both males and females due to sexual conflict over the timing of mating and incubation. Our experiments show that sex differences in cooperation and competition can explain group size variation in cooperative breeders.

    1. Ecology
    2. Evolutionary Biology
    Nicholas M Grebe, Jean Paul Hirwa ... Stacy Rosenbaum
    Research Article Updated

    Evolutionary theories predict that sibling relationships will reflect a complex balance of cooperative and competitive dynamics. In most mammals, dispersal and death patterns mean that sibling relationships occur in a relatively narrow window during development and/or only with same-sex individuals. Besides humans, one notable exception is mountain gorillas, in which non-sex-biased dispersal, relatively stable group composition, and the long reproductive tenures of alpha males mean that animals routinely reside with both maternally and paternally related siblings, of the same and opposite sex, throughout their lives. Using nearly 40,000 hr of behavioral data collected over 14 years on 699 sibling and 1235 non-sibling pairs of wild mountain gorillas, we demonstrate that individuals have strong affiliative preferences for full and maternal siblings over paternal siblings or unrelated animals, consistent with an inability to discriminate paternal kin. Intriguingly, however, aggression data imply the opposite. Aggression rates were statistically indistinguishable among all types of dyads except one: in mixed-sex dyads, non-siblings engaged in substantially more aggression than siblings of any type. This pattern suggests mountain gorillas may be capable of distinguishing paternal kin but nonetheless choose not to affiliate with them over non-kin. We observe a preference for maternal kin in a species with a high reproductive skew (i.e. high relatedness certainty), even though low reproductive skew (i.e. low relatedness certainty) is believed to underlie such biases in other non-human primates. Our results call into question reasons for strong maternal kin biases when paternal kin are identifiable, familiar, and similarly likely to be long-term groupmates, and they may also suggest behavioral mismatches at play during a transitional period in mountain gorilla society.