The evolution of distributed sensing and collective computation in animal populations

  1. Andrew M Hein  Is a corresponding author
  2. Sara Brin Rosenthal
  3. George I Hagstrom
  4. Andrew Berdahl
  5. Colin J Torney
  6. Iain D Couzin
  1. Princeton University, United States
  2. Santa Fe Institute, United States
  3. University of Exeter, Cornwall Campus, United Kingdom
  4. Max Planck Institute for Ornithology, Germany

Abstract

Many animal groups exhibit rapid, coordinated collective motion. Yet, the evolutionary forces that cause such collective responses to evolve are poorly understood. Here we develop analytical methods and evolutionary simulations based on experimental data from schooling fish. We use these methods to investigate how populations evolve within unpredictable, time-varying resource environments. We show that populations evolve toward a distinctive regime in behavioral phenotype space, where small responses of individuals to local environmental cues cause spontaneous changes in the collective state of groups. These changes resemble phase transitions in physical systems. Through these transitions, individuals evolve the emergent capacity to sense and respond to resource gradients (i.e. individuals perceive gradients via social interactions, rather than sensing gradients directly), and to allocate themselves among distinct, distant resource patches. Our results yield new insight into how natural selection, acting on selfish individuals, results in the highly effective collective responses evident in nature.

Article and author information

Author details

  1. Andrew M Hein

    Department of Ecology and Evolutionary Biology, Princeton University, Princeton, United States
    For correspondence
    ahein@princeton.edu
    Competing interests
    No competing interests declared.
  2. Sara Brin Rosenthal

    Department of Physics, Princeton University, Princeton, United States
    Competing interests
    No competing interests declared.
  3. George I Hagstrom

    Department of Ecology and Evolutionary Biology, Princeton University, Princeton, United States
    Competing interests
    No competing interests declared.
  4. Andrew Berdahl

    Santa Fe Institute, Santa Fe, United States
    Competing interests
    No competing interests declared.
  5. Colin J Torney

    Centre for Mathematics and the Environment, University of Exeter, Cornwall Campus, Penryn, United Kingdom
    Competing interests
    No competing interests declared.
  6. Iain D Couzin

    Department of Collective Behaviour, Max Planck Institute for Ornithology, Konstanz, Germany
    Competing interests
    Iain D Couzin, Reviewing editor, eLife.

Copyright

© 2015, Hein et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,644
    views
  • 779
    downloads
  • 62
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Andrew M Hein
  2. Sara Brin Rosenthal
  3. George I Hagstrom
  4. Andrew Berdahl
  5. Colin J Torney
  6. Iain D Couzin
(2015)
The evolution of distributed sensing and collective computation in animal populations
eLife 4:e10955.
https://doi.org/10.7554/eLife.10955

Share this article

https://doi.org/10.7554/eLife.10955

Further reading

    1. Ecology
    Chao Wen, Yuyi Lu ... Lars Chittka
    Research Article

    Bumblebees (Bombus terrestris) have been shown to engage in string-pulling behavior to access rewards. The objective of this study was to elucidate whether bumblebees display means-end comprehension in a string-pulling task. We presented bumblebees with two options: one where a string was connected to an artificial flower containing a reward and the other presenting an interrupted string. Bumblebees displayed a consistent preference for pulling connected strings over interrupted ones after training with a stepwise pulling technique. When exposed to novel string colors, bees continued to exhibit a bias towards pulling the connected string. This suggests that bumblebees engage in featural generalization of the visual display of the string connected to the flower in this task. If the view of the string connected to the flower was restricted during the training phase, the proportion of bumblebees choosing the connected strings significantly decreased. Similarly, when the bumblebees were confronted with coiled connected strings during the testing phase, they failed to identify and reject the interrupted strings. This finding underscores the significance of visual consistency in enabling the bumblebees to perform the task successfully. Our results suggest that bumblebees’ ability to distinguish between continuous strings and interrupted strings relies on a combination of image matching and associative learning, rather than means-end understanding. These insights contribute to a deeper understanding of the cognitive processes employed by bumblebees when tackling complex spatial tasks.

    1. Ecology
    Mathilde Delacoux, Fumihiro Kano
    Research Article

    During collective vigilance, it is commonly assumed that individual animals compromise their feeding time to be vigilant against predators, benefiting the entire group. One notable issue with this assumption concerns the unclear nature of predator ‘detection’, particularly in terms of vision. It remains uncertain how a vigilant individual utilizes its high-acuity vision (such as the fovea) to detect a predator cue and subsequently guide individual and collective escape responses. Using fine-scale motion-capture technologies, we tracked the head and body orientations of pigeons (hence reconstructed their visual fields and foveal projections) foraging in a flock during simulated predator attacks. Pigeons used their fovea to inspect predator cues. Earlier foveation on a predator cue was linked to preceding behaviors related to vigilance and feeding, such as head-up or down positions, head-scanning, and food-pecking. Moreover, earlier foveation predicted earlier evasion flights at both the individual and collective levels. However, we also found that relatively long delay between their foveation and escape responses in individuals obscured the relationship between these two responses. While our results largely support the existing assumptions about vigilance, they also underscore the importance of considering vision and addressing the disparity between detection and escape responses in future research.