The evolution of distributed sensing and collective computation in animal populations

  1. Andrew M Hein  Is a corresponding author
  2. Sara Brin Rosenthal
  3. George I Hagstrom
  4. Andrew Berdahl
  5. Colin J Torney
  6. Iain D Couzin
  1. Princeton University, United States
  2. Santa Fe Institute, United States
  3. University of Exeter, Cornwall Campus, United Kingdom
  4. Max Planck Institute for Ornithology, Germany

Abstract

Many animal groups exhibit rapid, coordinated collective motion. Yet, the evolutionary forces that cause such collective responses to evolve are poorly understood. Here we develop analytical methods and evolutionary simulations based on experimental data from schooling fish. We use these methods to investigate how populations evolve within unpredictable, time-varying resource environments. We show that populations evolve toward a distinctive regime in behavioral phenotype space, where small responses of individuals to local environmental cues cause spontaneous changes in the collective state of groups. These changes resemble phase transitions in physical systems. Through these transitions, individuals evolve the emergent capacity to sense and respond to resource gradients (i.e. individuals perceive gradients via social interactions, rather than sensing gradients directly), and to allocate themselves among distinct, distant resource patches. Our results yield new insight into how natural selection, acting on selfish individuals, results in the highly effective collective responses evident in nature.

Article and author information

Author details

  1. Andrew M Hein

    Department of Ecology and Evolutionary Biology, Princeton University, Princeton, United States
    For correspondence
    ahein@princeton.edu
    Competing interests
    No competing interests declared.
  2. Sara Brin Rosenthal

    Department of Physics, Princeton University, Princeton, United States
    Competing interests
    No competing interests declared.
  3. George I Hagstrom

    Department of Ecology and Evolutionary Biology, Princeton University, Princeton, United States
    Competing interests
    No competing interests declared.
  4. Andrew Berdahl

    Santa Fe Institute, Santa Fe, United States
    Competing interests
    No competing interests declared.
  5. Colin J Torney

    Centre for Mathematics and the Environment, University of Exeter, Cornwall Campus, Penryn, United Kingdom
    Competing interests
    No competing interests declared.
  6. Iain D Couzin

    Department of Collective Behaviour, Max Planck Institute for Ornithology, Konstanz, Germany
    Competing interests
    Iain D Couzin, Reviewing editor, eLife.

Reviewing Editor

  1. Michael Doebeli, University of British Columbia, Canada

Publication history

  1. Received: August 20, 2015
  2. Accepted: November 1, 2015
  3. Accepted Manuscript published: December 10, 2015 (version 1)
  4. Accepted Manuscript updated: December 17, 2015 (version 2)
  5. Version of Record published: February 3, 2016 (version 3)

Copyright

© 2015, Hein et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,317
    Page views
  • 721
    Downloads
  • 48
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Andrew M Hein
  2. Sara Brin Rosenthal
  3. George I Hagstrom
  4. Andrew Berdahl
  5. Colin J Torney
  6. Iain D Couzin
(2015)
The evolution of distributed sensing and collective computation in animal populations
eLife 4:e10955.
https://doi.org/10.7554/eLife.10955
  1. Further reading

Further reading

    1. Ecology
    2. Evolutionary Biology
    Longhui Zhao et al.
    Research Article Updated

    Many animals rely on complex signals that target multiple senses to attract mates and repel rivals. These multimodal displays can however also attract unintended receivers, which can be an important driver of signal complexity. Despite being taxonomically widespread, we often lack insight into how multimodal signals evolve from unimodal signals and in particular what roles unintended eavesdroppers play. Here, we assess whether the physical movements of parasite defense behavior increase the complexity and attractiveness of an acoustic sexual signal in the little torrent frog (Amolops torrentis). Calling males of this species often display limb movements in order to defend against blood-sucking parasites such as frog-biting midges that eavesdrop on their acoustic signal. Through mate choice tests we show that some of these midge-evoked movements influence female preference for acoustic signals. Our data suggest that midge-induced movements may be incorporated into a sexual display, targeting both hearing and vision in the intended receiver. Females may play an important role in incorporating these multiple components because they prefer signals which combine multiple modalities. Our results thus help to understand the relationship between natural and sexual selection pressure operating on signalers and how in turn this may influence multimodal signal evolution.

    1. Ecology
    Peter Dietrich et al.
    Research Article Updated

    Global change has dramatic impacts on grassland diversity. However, little is known about how fast species can adapt to diversity loss and how this affects their responses to global change. Here, we performed a common garden experiment testing whether plant responses to global change are influenced by their selection history and the conditioning history of soil at different plant diversity levels. Using seeds of four grass species and soil samples from a 14-year-old biodiversity experiment, we grew the offspring of the plants either in their own soil or in soil of a different community, and exposed them either to drought, increased nitrogen input, or a combination of both. Under nitrogen addition, offspring of plants selected at high diversity produced more biomass than those selected at low diversity, while drought neutralized differences in biomass production. Moreover, under the influence of global change drivers, soil history, and to a lesser extent plant history, had species-specific effects on trait expression. Our results show that plant diversity modulates plant-soil interactions and growth strategies of plants, which in turn affects plant eco-evolutionary pathways. How this change affects species' response to global change and whether this can cause a feedback loop should be investigated in more detail in future studies.