Precise regulation of the guidance receptor DMA-1 by KPC-1/Furin instructs dendritic branching decisions

  1. Xintong Dong
  2. Hui Chiu
  3. Yeonhee Jenny Park
  4. Wei Zou
  5. Yan Zou
  6. Engin Özkan
  7. Chieh Chang
  8. Kang Shen  Is a corresponding author
  1. Howard Hughes Medical Institute, Stanford University, United States
  2. California Institute of Technology, United States
  3. University of Chicago, United States
  4. Shanghai Tech University, China
  5. University of Illinois at Chicago, United States

Abstract

Extracellular adhesion molecules and their neuronal receptors guide the growth and branching of axons and dendrites. Growth cones are attracted to intermediate targets, but they must switch their response upon arrival so that they can move away and complete the next stage of growth. Here, we show that KPC-1, a C. elegans Furin homolog, regulates the level of the branching receptor DMA-1 on dendrites by targeting it to late endosomes. In kpc-1 mutants, the level of DMA-1 is abnormally high on dendrites, resulting in trapping of dendrites at locations where a high level of the cognate ligand, the adhesion molecule SAX-7/L1, is present. The misregulation of DMA-1 also causes dendritic self-avoidance defects. Thus, precise regulation of guidance receptors creates flexibility of responses to guidance signals and is critical for neuronal morphogenesis.

Article and author information

Author details

  1. Xintong Dong

    Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, United States
    Competing interests
    No competing interests declared.
  2. Hui Chiu

    Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
    Competing interests
    No competing interests declared.
  3. Yeonhee Jenny Park

    Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, United States
    Competing interests
    No competing interests declared.
  4. Wei Zou

    Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, United States
    Competing interests
    No competing interests declared.
  5. Yan Zou

    School of Life Science, Shanghai Tech University, Shanghai, China
    Competing interests
    No competing interests declared.
  6. Engin Özkan

    Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, United States
    Competing interests
    No competing interests declared.
  7. Chieh Chang

    Department of Biological Sciences, University of Illinois at Chicago, Chicago, United States
    Competing interests
    No competing interests declared.
  8. Kang Shen

    Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, United States
    For correspondence
    kangshen@stanford.edu
    Competing interests
    Kang Shen, Reviewing editor, eLife.

Reviewing Editor

  1. Hugo J Bellen, Howard Hughes Medical Institute, Baylor College of Medicine, United States

Version history

  1. Received: August 20, 2015
  2. Accepted: February 26, 2016
  3. Accepted Manuscript published: March 14, 2016 (version 1)
  4. Version of Record published: March 21, 2016 (version 2)

Copyright

© 2016, Dong et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,505
    views
  • 493
    downloads
  • 30
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Xintong Dong
  2. Hui Chiu
  3. Yeonhee Jenny Park
  4. Wei Zou
  5. Yan Zou
  6. Engin Özkan
  7. Chieh Chang
  8. Kang Shen
(2016)
Precise regulation of the guidance receptor DMA-1 by KPC-1/Furin instructs dendritic branching decisions
eLife 5:e11008.
https://doi.org/10.7554/eLife.11008

Share this article

https://doi.org/10.7554/eLife.11008

Further reading

    1. Developmental Biology
    2. Neuroscience
    Amy R Poe, Lucy Zhu ... Matthew S Kayser
    Research Article

    Sleep and feeding patterns lack strong daily rhythms during early life. As diurnal animals mature, feeding is consolidated to the day and sleep to the night. In Drosophila, circadian sleep patterns are initiated with formation of a circuit connecting the central clock to arousal output neurons; emergence of circadian sleep also enables long-term memory (LTM). However, the cues that trigger the development of this clock-arousal circuit are unknown. Here, we identify a role for nutritional status in driving sleep-wake rhythm development in Drosophila larvae. We find that in the 2nd instar larval period (L2), sleep and feeding are spread across the day; these behaviors become organized into daily patterns by the 3rd instar larval stage (L3). Forcing mature (L3) animals to adopt immature (L2) feeding strategies disrupts sleep-wake rhythms and the ability to exhibit LTM. In addition, the development of the clock (DN1a)-arousal (Dh44) circuit itself is influenced by the larval nutritional environment. Finally, we demonstrate that larval arousal Dh44 neurons act through glucose metabolic genes to drive onset of daily sleep-wake rhythms. Together, our data suggest that changes to energetic demands in developing organisms trigger the formation of sleep-circadian circuits and behaviors.

    1. Cell Biology
    2. Developmental Biology
    Filip Knop, Apolena Zounarova ... Marie Macůrková
    Research Article

    During Caenorhabditis elegans development, multiple cells migrate long distances or extend processes to reach their final position and/or attain proper shape. The Wnt signalling pathway stands out as one of the major coordinators of cell migration or cell outgrowth along the anterior-posterior body axis. The outcome of Wnt signalling is fine-tuned by various mechanisms including endocytosis. In this study, we show that SEL-5, the C. elegans orthologue of mammalian AP2-associated kinase AAK1, acts together with the retromer complex as a positive regulator of EGL-20/Wnt signalling during the migration of QL neuroblast daughter cells. At the same time, SEL-5 in cooperation with the retromer complex is also required during excretory canal cell outgrowth. Importantly, SEL-5 kinase activity is not required for its role in neuronal migration or excretory cell outgrowth, and neither of these processes is dependent on DPY-23/AP2M1 phosphorylation. We further establish that the Wnt proteins CWN-1 and CWN-2 together with the Frizzled receptor CFZ-2 positively regulate excretory cell outgrowth, while LIN-44/Wnt and LIN-17/Frizzled together generate a stop signal inhibiting its extension.