Abstract

The RIG-I-like receptors (RLRs) play a major role in sensing RNA virus infection to initiate and modulate antiviral immunity. They interact with particular viral RNAs, most of them being still unknown. To decipher the viral RNA signature on RLRs during viral infection, we tagged RLRs (RIG-I, MDA5, LGP2) and applied tagged protein affinity purification followed by next-generation sequencing (NGS) of associated RNA molecules. Two viruses with negative- and positive-sense RNA genome were used: measles (MV) and chikungunya (CHIKV). NGS analysis revealed that distinct regions of MV genome were specifically recognized by distinct RLRs: RIG-I recognized defective interfering genomes, whereas MDA5 and LGP2 specifically bound MV nucleoprotein-coding region. During CHIKV infection, RIG-I associated specifically to the 3' untranslated region of viral genome. This study provides the first comparative view of the viral RNA ligands for RIG-I, MDA5 and LGP2 in the presence of infection.

Article and author information

Author details

  1. Raul Y Sanchez David

    Unité de Génomique Virale et Vaccination, Institut Pasteur, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  2. Chantal Combredet

    Unité de Génomique Virale et Vaccination, Institut Pasteur, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Odile Sismeiro

    Transcriptome and Epigenome, BioMics Pole, Center for Innovation and Technological Research, Institut Pasteur, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Marie-Agnès Dillies

    Transcriptome and Epigenome, BioMics Pole, Center for Innovation and Technological Research, Institut Pasteur, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Bernd Jagla

    Transcriptome and Epigenome, BioMics Pole, Center for Innovation and Technological Research, Institut Pasteur, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Jean-Yves Coppée

    Transcriptome and Epigenome, BioMics Pole, Center for Innovation and Technological Research, Institut Pasteur, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  7. Marie Mura

    Unité de Génomique Virale et Vaccination, Institut Pasteur, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  8. Mathilde Guerbois Galla

    University of Texas Medical Branch, Galveston, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Philippe Despres

    Technology platform CYROI, University of Reunion Island, Saint-Clotilde, France
    Competing interests
    The authors declare that no competing interests exist.
  10. Frédéric Tangy

    Unité de Génomique Virale et Vaccination, Institut Pasteur, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  11. Anastassia V Komarova

    Unité de Génomique Virale et Vaccination, Institut Pasteur, Paris, France
    For correspondence
    stasy@pasteur.fr
    Competing interests
    The authors declare that no competing interests exist.

Copyright

© 2016, Sanchez David et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,477
    views
  • 1,083
    downloads
  • 82
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Raul Y Sanchez David
  2. Chantal Combredet
  3. Odile Sismeiro
  4. Marie-Agnès Dillies
  5. Bernd Jagla
  6. Jean-Yves Coppée
  7. Marie Mura
  8. Mathilde Guerbois Galla
  9. Philippe Despres
  10. Frédéric Tangy
  11. Anastassia V Komarova
(2016)
Comparative analysis of viral RNA signatures on different RIG-I-like receptors
eLife 5:e11275.
https://doi.org/10.7554/eLife.11275

Share this article

https://doi.org/10.7554/eLife.11275

Further reading

    1. Immunology and Inflammation
    Zhiyan Wang, Nore Ojogun ... Mingfang Lu
    Research Article

    The incidence of metabolic dysfunction-associated steatotic liver disease (MASLD) has been increasing worldwide. Since gut-derived bacterial lipopolysaccharides (LPS) can travel via the portal vein to the liver and play an important role in producing hepatic pathology, it seemed possible that (1) LPS stimulates hepatic cells to accumulate lipid, and (2) inactivating LPS can be preventive. Acyloxyacyl hydrolase (AOAH), the eukaryotic lipase that inactivates LPS and oxidized phospholipids, is produced in the intestine, liver, and other organs. We fed mice either normal chow or a high-fat diet for 28 weeks and found that Aoah-/- mice accumulated more hepatic lipid than did Aoah+/+ mice. In young mice, before increased hepatic fat accumulation was observed, Aoah-/- mouse livers increased their abundance of sterol regulatory element-binding protein 1, and the expression of its target genes that promote fatty acid synthesis. Aoah-/- mice also increased hepatic expression of Cd36 and Fabp3, which mediate fatty acid uptake, and decreased expression of fatty acid-oxidation-related genes Acot2 and Ppara. Our results provide evidence that increasing AOAH abundance in the gut, bloodstream, and/or liver may be an effective strategy for preventing or treating MASLD.

    1. Immunology and Inflammation
    2. Microbiology and Infectious Disease
    Malika Hale, Kennidy K Takehara ... Marion Pepper
    Research Article

    Pseudomonas aeruginosa (PA) is an opportunistic, frequently multidrug-resistant pathogen that can cause severe infections in hospitalized patients. Antibodies against the PA virulence factor, PcrV, protect from death and disease in a variety of animal models. However, clinical trials of PcrV-binding antibody-based products have thus far failed to demonstrate benefit. Prior candidates were derivations of antibodies identified using protein-immunized animal systems and required extensive engineering to optimize binding and/or reduce immunogenicity. Of note, PA infections are common in people with cystic fibrosis (pwCF), who are generally believed to mount normal adaptive immune responses. Here, we utilized a tetramer reagent to detect and isolate PcrV-specific B cells in pwCF and, via single-cell sorting and paired-chain sequencing, identified the B cell receptor (BCR) variable region sequences that confer PcrV-specificity. We derived multiple high affinity anti-PcrV monoclonal antibodies (mAbs) from PcrV-specific B cells across three donors, including mAbs that exhibit potent anti-PA activity in a murine pneumonia model. This robust strategy for mAb discovery expands what is known about PA-specific B cells in pwCF and yields novel mAbs with potential for future clinical use.