Structural basis of nucleic-acid recognition and double-strand unwinding by the essential neuronal protein Pur-alpha

  1. Janine Weber
  2. Han Bao
  3. Christoph Hartlmüller
  4. Zhiqin Wang
  5. Almut Windhager
  6. Robert Janowski
  7. Tobias Madl
  8. Peng Jin
  9. Dierk Niessing  Is a corresponding author
  1. Helmholtz Zentrum München - German research center for environmental health, Germany
  2. Emory University, United States
  3. Technische Universität München, Germany

Abstract

The neuronal DNA-/RNA-binding protein Pur-alpha is a transcription regulator and core factor for mRNA-localization. Pur-alpha deficient mice die after birth with pleiotropic neuronal defects. Here we report the crystal structure of the DNA-/RNA-binding domain of Pur-alpha in complex with ssDNA. It reveals base-specific recognition and offers a molecular explanation for the effect of point mutations in the 5q31.3 microdeletion syndrome. Consistent with the crystal structure, biochemical and NMR data indicate that Pur-alpha binds DNA and RNA in the same way, suggesting binding modes for tri- and hexanucleotide repeat RNAs in two neurodegenerative RNAopathies. Additionally, structure-based in vitro experiments resolved the molecular mechanism of Pur-alpha's unwindase activity. Complementing in vivo analyses in Drosophila demonstrated the importance of a highly conserved phenylalanine for Pur-alpha's unwinding and neuroprotective function. By uncovering the molecular mechanisms of nucleic-acid binding, this study contributes to understanding the cellular role of Pur-alpha and its implications in neurodegenerative diseases.

Article and author information

Author details

  1. Janine Weber

    Institute of Structural Biology, Helmholtz Zentrum München - German research center for environmental health, Neuherberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Han Bao

    Department of Human Genetics, Emory University, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Christoph Hartlmüller

    Center for Integrated Protein Science Munich, Department of Chemistry, Technische Universität München, Munich, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Zhiqin Wang

    Department of Human Genetics, Emory University, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Almut Windhager

    Institute of Structural Biology, Helmholtz Zentrum München - German research center for environmental health, Neuherberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Robert Janowski

    Institute of Structural Biology, Helmholtz Zentrum München - German research center for environmental health, Neuherberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Tobias Madl

    Institute of Structural Biology, Helmholtz Zentrum München - German research center for environmental health, Neuherberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Peng Jin

    Department of Human Genetics, Emory University, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Dierk Niessing

    Institute of Structural Biology, Helmholtz Zentrum München - German research center for environmental health, Neuherberg, Germany
    For correspondence
    dierk.niessing@med.uni-muenchen.de
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Karsten Weis, ETH Zürich, Switzerland

Version history

  1. Received: September 3, 2015
  2. Accepted: January 7, 2016
  3. Accepted Manuscript published: January 8, 2016 (version 1)
  4. Accepted Manuscript updated: January 12, 2016 (version 2)
  5. Version of Record published: February 11, 2016 (version 3)

Copyright

© 2016, Weber et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,217
    views
  • 441
    downloads
  • 27
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Janine Weber
  2. Han Bao
  3. Christoph Hartlmüller
  4. Zhiqin Wang
  5. Almut Windhager
  6. Robert Janowski
  7. Tobias Madl
  8. Peng Jin
  9. Dierk Niessing
(2016)
Structural basis of nucleic-acid recognition and double-strand unwinding by the essential neuronal protein Pur-alpha
eLife 5:e11297.
https://doi.org/10.7554/eLife.11297

Share this article

https://doi.org/10.7554/eLife.11297

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Isabelle Petit-Hartlein, Annelise Vermot ... Franck Fieschi
    Research Article

    NADPH oxidases (NOX) are transmembrane proteins, widely spread in eukaryotes and prokaryotes, that produce reactive oxygen species (ROS). Eukaryotes use the ROS products for innate immune defense and signaling in critical (patho)physiological processes. Despite the recent structures of human NOX isoforms, the activation of electron transfer remains incompletely understood. SpNOX, a homolog from Streptococcus pneumoniae, can serves as a robust model for exploring electron transfers in the NOX family thanks to its constitutive activity. Crystal structures of SpNOX full-length and dehydrogenase (DH) domain constructs are revealed here. The isolated DH domain acts as a flavin reductase, and both constructs use either NADPH or NADH as substrate. Our findings suggest that hydride transfer from NAD(P)H to FAD is the rate-limiting step in electron transfer. We identify significance of F397 in nicotinamide access to flavin isoalloxazine and confirm flavin binding contributions from both DH and Transmembrane (TM) domains. Comparison with related enzymes suggests that distal access to heme may influence the final electron acceptor, while the relative position of DH and TM does not necessarily correlate with activity, contrary to previous suggestions. It rather suggests requirement of an internal rearrangement, within the DH domain, to switch from a resting to an active state. Thus, SpNOX appears to be a good model of active NOX2, which allows us to propose an explanation for NOX2’s requirement for activation.

    1. Biochemistry and Chemical Biology
    2. Plant Biology
    Dietmar Funck, Malte Sinn ... Jörg S Hartig
    Research Article

    Metabolism and biological functions of the nitrogen-rich compound guanidine have long been neglected. The discovery of four classes of guanidine-sensing riboswitches and two pathways for guanidine degradation in bacteria hint at widespread sources of unconjugated guanidine in nature. So far, only three enzymes from a narrow range of bacteria and fungi have been shown to produce guanidine, with the ethylene-forming enzyme (EFE) as the most prominent example. Here, we show that a related class of Fe2+- and 2-oxoglutarate-dependent dioxygenases (2-ODD-C23) highly conserved among plants and algae catalyze the hydroxylation of homoarginine at the C6-position. Spontaneous decay of 6-hydroxyhomoarginine yields guanidine and 2-aminoadipate-6-semialdehyde. The latter can be reduced to pipecolate by pyrroline-5-carboxylate reductase but more likely is oxidized to aminoadipate by aldehyde dehydrogenase ALDH7B in vivo. Arabidopsis has three 2-ODD-C23 isoforms, among which Din11 is unusual because it also accepted arginine as substrate, which was not the case for the other 2-ODD-C23 isoforms from Arabidopsis or other plants. In contrast to EFE, none of the three Arabidopsis enzymes produced ethylene. Guanidine contents were typically between 10 and 20 nmol*(g fresh weight)-1 in Arabidopsis but increased to 100 or 300 nmol*(g fresh weight)-1 after homoarginine feeding or treatment with Din11-inducing methyljasmonate, respectively. In 2-ODD-C23 triple mutants, the guanidine content was strongly reduced, whereas it increased in overexpression plants. We discuss the implications of the finding of widespread guanidine-producing enzymes in photosynthetic eukaryotes as a so far underestimated branch of the bio-geochemical nitrogen cycle and propose possible functions of natural guanidine production.