Structural basis of nucleic-acid recognition and double-strand unwinding by the essential neuronal protein Pur-alpha

  1. Janine Weber
  2. Han Bao
  3. Christoph Hartlmüller
  4. Zhiqin Wang
  5. Almut Windhager
  6. Robert Janowski
  7. Tobias Madl
  8. Peng Jin
  9. Dierk Niessing  Is a corresponding author
  1. Helmholtz Zentrum München - German research center for environmental health, Germany
  2. Emory University, United States
  3. Technische Universität München, Germany

Abstract

The neuronal DNA-/RNA-binding protein Pur-alpha is a transcription regulator and core factor for mRNA-localization. Pur-alpha deficient mice die after birth with pleiotropic neuronal defects. Here we report the crystal structure of the DNA-/RNA-binding domain of Pur-alpha in complex with ssDNA. It reveals base-specific recognition and offers a molecular explanation for the effect of point mutations in the 5q31.3 microdeletion syndrome. Consistent with the crystal structure, biochemical and NMR data indicate that Pur-alpha binds DNA and RNA in the same way, suggesting binding modes for tri- and hexanucleotide repeat RNAs in two neurodegenerative RNAopathies. Additionally, structure-based in vitro experiments resolved the molecular mechanism of Pur-alpha's unwindase activity. Complementing in vivo analyses in Drosophila demonstrated the importance of a highly conserved phenylalanine for Pur-alpha's unwinding and neuroprotective function. By uncovering the molecular mechanisms of nucleic-acid binding, this study contributes to understanding the cellular role of Pur-alpha and its implications in neurodegenerative diseases.

Article and author information

Author details

  1. Janine Weber

    Institute of Structural Biology, Helmholtz Zentrum München - German research center for environmental health, Neuherberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Han Bao

    Department of Human Genetics, Emory University, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Christoph Hartlmüller

    Center for Integrated Protein Science Munich, Department of Chemistry, Technische Universität München, Munich, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Zhiqin Wang

    Department of Human Genetics, Emory University, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Almut Windhager

    Institute of Structural Biology, Helmholtz Zentrum München - German research center for environmental health, Neuherberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Robert Janowski

    Institute of Structural Biology, Helmholtz Zentrum München - German research center for environmental health, Neuherberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Tobias Madl

    Institute of Structural Biology, Helmholtz Zentrum München - German research center for environmental health, Neuherberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Peng Jin

    Department of Human Genetics, Emory University, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Dierk Niessing

    Institute of Structural Biology, Helmholtz Zentrum München - German research center for environmental health, Neuherberg, Germany
    For correspondence
    dierk.niessing@med.uni-muenchen.de
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Karsten Weis, ETH Zürich, Switzerland

Version history

  1. Received: September 3, 2015
  2. Accepted: January 7, 2016
  3. Accepted Manuscript published: January 8, 2016 (version 1)
  4. Accepted Manuscript updated: January 12, 2016 (version 2)
  5. Version of Record published: February 11, 2016 (version 3)

Copyright

© 2016, Weber et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,265
    views
  • 447
    downloads
  • 35
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Janine Weber
  2. Han Bao
  3. Christoph Hartlmüller
  4. Zhiqin Wang
  5. Almut Windhager
  6. Robert Janowski
  7. Tobias Madl
  8. Peng Jin
  9. Dierk Niessing
(2016)
Structural basis of nucleic-acid recognition and double-strand unwinding by the essential neuronal protein Pur-alpha
eLife 5:e11297.
https://doi.org/10.7554/eLife.11297

Share this article

https://doi.org/10.7554/eLife.11297

Further reading

    1. Biochemistry and Chemical Biology
    2. Chromosomes and Gene Expression
    Ramona Weber, Chung-Te Chang
    Research Article

    Recent findings indicate that the translation elongation rate influences mRNA stability. One of the factors that has been implicated in this link between mRNA decay and translation speed is the yeast DEAD-box helicase Dhh1p. Here, we demonstrated that the human ortholog of Dhh1p, DDX6, triggers the deadenylation-dependent decay of inefficiently translated mRNAs in human cells. DDX6 interacts with the ribosome through the Phe-Asp-Phe (FDF) motif in its RecA2 domain. Furthermore, RecA2-mediated interactions and ATPase activity are both required for DDX6 to destabilize inefficiently translated mRNAs. Using ribosome profiling and RNA sequencing, we identified two classes of endogenous mRNAs that are regulated in a DDX6-dependent manner. The identified targets are either translationally regulated or regulated at the steady-state-level and either exhibit signatures of poor overall translation or of locally reduced ribosome translocation rates. Transferring the identified sequence stretches into a reporter mRNA caused translation- and DDX6-dependent degradation of the reporter mRNA. In summary, these results identify DDX6 as a crucial regulator of mRNA translation and decay triggered by slow ribosome movement and provide insights into the mechanism by which DDX6 destabilizes inefficiently translated mRNAs.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Amy H Andreotti, Volker Dötsch
    Editorial

    The articles in this special issue highlight how modern cellular, biochemical, biophysical and computational techniques are allowing deeper and more detailed studies of allosteric kinase regulation.