Structural basis of nucleic-acid recognition and double-strand unwinding by the essential neuronal protein Pur-alpha

  1. Janine Weber
  2. Han Bao
  3. Christoph Hartlmüller
  4. Zhiqin Wang
  5. Almut Windhager
  6. Robert Janowski
  7. Tobias Madl
  8. Peng Jin
  9. Dierk Niessing  Is a corresponding author
  1. Helmholtz Zentrum München - German research center for environmental health, Germany
  2. Emory University, United States
  3. Technische Universität München, Germany

Abstract

The neuronal DNA-/RNA-binding protein Pur-alpha is a transcription regulator and core factor for mRNA-localization. Pur-alpha deficient mice die after birth with pleiotropic neuronal defects. Here we report the crystal structure of the DNA-/RNA-binding domain of Pur-alpha in complex with ssDNA. It reveals base-specific recognition and offers a molecular explanation for the effect of point mutations in the 5q31.3 microdeletion syndrome. Consistent with the crystal structure, biochemical and NMR data indicate that Pur-alpha binds DNA and RNA in the same way, suggesting binding modes for tri- and hexanucleotide repeat RNAs in two neurodegenerative RNAopathies. Additionally, structure-based in vitro experiments resolved the molecular mechanism of Pur-alpha's unwindase activity. Complementing in vivo analyses in Drosophila demonstrated the importance of a highly conserved phenylalanine for Pur-alpha's unwinding and neuroprotective function. By uncovering the molecular mechanisms of nucleic-acid binding, this study contributes to understanding the cellular role of Pur-alpha and its implications in neurodegenerative diseases.

Article and author information

Author details

  1. Janine Weber

    Institute of Structural Biology, Helmholtz Zentrum München - German research center for environmental health, Neuherberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Han Bao

    Department of Human Genetics, Emory University, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Christoph Hartlmüller

    Center for Integrated Protein Science Munich, Department of Chemistry, Technische Universität München, Munich, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Zhiqin Wang

    Department of Human Genetics, Emory University, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Almut Windhager

    Institute of Structural Biology, Helmholtz Zentrum München - German research center for environmental health, Neuherberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Robert Janowski

    Institute of Structural Biology, Helmholtz Zentrum München - German research center for environmental health, Neuherberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Tobias Madl

    Institute of Structural Biology, Helmholtz Zentrum München - German research center for environmental health, Neuherberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Peng Jin

    Department of Human Genetics, Emory University, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Dierk Niessing

    Institute of Structural Biology, Helmholtz Zentrum München - German research center for environmental health, Neuherberg, Germany
    For correspondence
    dierk.niessing@med.uni-muenchen.de
    Competing interests
    The authors declare that no competing interests exist.

Copyright

© 2016, Weber et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,347
    views
  • 460
    downloads
  • 38
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Janine Weber
  2. Han Bao
  3. Christoph Hartlmüller
  4. Zhiqin Wang
  5. Almut Windhager
  6. Robert Janowski
  7. Tobias Madl
  8. Peng Jin
  9. Dierk Niessing
(2016)
Structural basis of nucleic-acid recognition and double-strand unwinding by the essential neuronal protein Pur-alpha
eLife 5:e11297.
https://doi.org/10.7554/eLife.11297

Share this article

https://doi.org/10.7554/eLife.11297

Further reading

    1. Biochemistry and Chemical Biology
    Meina He, Yongxin Tao ... Wenli Chen
    Research Article

    Copper is an essential enzyme cofactor in bacteria, but excess copper is highly toxic. Bacteria can cope with copper stress by increasing copper resistance and initiating chemorepellent response. However, it remains unclear how bacteria coordinate chemotaxis and resistance to copper. By screening proteins that interacted with the chemotaxis kinase CheA, we identified a copper-binding repressor CsoR that interacted with CheA in Pseudomonas putida. CsoR interacted with the HPT (P1), Dimer (P3), and HATPase_c (P4) domains of CheA and inhibited CheA autophosphorylation, resulting in decreased chemotaxis. The copper-binding of CsoR weakened its interaction with CheA, which relieved the inhibition of chemotaxis by CsoR. In addition, CsoR bound to the promoter of copper-resistance genes to inhibit gene expression, and copper-binding released CsoR from the promoter, leading to increased gene expression and copper resistance. P. putida cells exhibited a chemorepellent response to copper in a CheA-dependent manner, and CsoR inhibited the chemorepellent response to copper. Besides, the CheA-CsoR interaction also existed in proteins from several other bacterial species. Our results revealed a mechanism by which bacteria coordinately regulated chemotaxis and resistance to copper by CsoR.

    1. Biochemistry and Chemical Biology
    2. Genetics and Genomics
    Jiale Zhou, Ding Zhao ... Zhanjun Li
    Research Article

    5-Methylcytosine (m5C) is one of the posttranscriptional modifications in mRNA and is involved in the pathogenesis of various diseases. However, the capacity of existing assays for accurately and comprehensively transcriptome-wide m5C mapping still needs improvement. Here, we develop a detection method named DRAM (deaminase and reader protein assisted RNA methylation analysis), in which deaminases (APOBEC1 and TadA-8e) are fused with m5C reader proteins (ALYREF and YBX1) to identify the m5C sites through deamination events neighboring the methylation sites. This antibody-free and bisulfite-free approach provides transcriptome-wide editing regions which are highly overlapped with the publicly available bisulfite-sequencing (BS-seq) datasets and allows for a more stable and comprehensive identification of the m5C loci. In addition, DRAM system even supports ultralow input RNA (10 ng). We anticipate that the DRAM system could pave the way for uncovering further biological functions of m5C modifications.