Nanobodies: site-specific labeling for super-resolution imaging, rapid epitope-mapping and native protein complex isolation

  1. Tino Pleiner
  2. Mark Bates
  3. Sergei Trakhanov
  4. Chung-Tien Lee
  5. Jan Erik Schliep
  6. Hema Chug
  7. Marc Böhning
  8. Holger Stark
  9. Henning Urlaub
  10. Dirk Görlich  Is a corresponding author
  1. Max Planck Institute for Biophysical Chemistry, Germany
  2. Max Planck Institute for Biophysical Chemistry,, Germany

Abstract

Nanobodies are single-domain antibodies of camelid origin. We generated nanobodies against the vertebrate nuclear pore complex (NPC) and used them in STORM imaging to locate individual NPC proteins with <2nm epitope-label displacement. For this, we introduced cysteines at specific positions in the nanobody sequence and labeled the resulting proteins with fluorophore-maleimides. As nanobodies are normally stabilized by disulfide-bonded cysteines, this appears counterintuitive. Yet, our analysis showed that this caused no folding problems. Compared to traditional NHS ester-labeling of lysines, the cysteine-maleimide strategy resulted in far less background in fluorescence imaging, it better preserved epitope recognition and it is site-specific. We also devised a rapid epitope-mapping strategy, which relies on crosslinking mass spectrometry and the introduced ectopic cysteines. Finally, we used different anti-nucleoporin nanobodies to purify the major NPC building blocks - each in a single step, with native elution and, as demonstrated, in excellent quality for structural analysis by electron microscopy. The presented strategies are applicable to any nanobody and nanobody-target.

Article and author information

Author details

  1. Tino Pleiner

    Department of Cellular Logistics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Mark Bates

    Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Sergei Trakhanov

    Department of Cellular Logistics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Chung-Tien Lee

    Bioanalytical Mass Spectrometry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Jan Erik Schliep

    3D Electron Cryo-Microscopy Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Hema Chug

    Department of Cellular Logistics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Marc Böhning

    Department of Cellular Logistics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Holger Stark

    3D Electron Cryo-Microscopy Group, Max Planck Institute for Biophysical Chemistry,, Göttingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  9. Henning Urlaub

    Bioanalytical Mass Spectrometry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  10. Dirk Görlich

    Department of Cellular Logistics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
    For correspondence
    goerlich@mpibpc.mpg.de
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Karsten Weis, ETH Zürich, Switzerland

Version history

  1. Received: September 3, 2015
  2. Accepted: December 2, 2015
  3. Accepted Manuscript published: December 3, 2015 (version 1)
  4. Accepted Manuscript updated: December 5, 2015 (version 2)
  5. Version of Record published: February 3, 2016 (version 3)
  6. Version of Record updated: March 16, 2016 (version 4)

Copyright

© 2015, Pleiner et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 17,589
    views
  • 3,598
    downloads
  • 183
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Tino Pleiner
  2. Mark Bates
  3. Sergei Trakhanov
  4. Chung-Tien Lee
  5. Jan Erik Schliep
  6. Hema Chug
  7. Marc Böhning
  8. Holger Stark
  9. Henning Urlaub
  10. Dirk Görlich
(2015)
Nanobodies: site-specific labeling for super-resolution imaging, rapid epitope-mapping and native protein complex isolation
eLife 4:e11349.
https://doi.org/10.7554/eLife.11349

Share this article

https://doi.org/10.7554/eLife.11349

Further reading

    1. Biochemistry and Chemical Biology
    2. Neuroscience
    Katarzyna Marta Zoltowska, Utpal Das ... Lucía Chávez-Gutiérrez
    Research Article

    Amyloid β (Aβ) peptides accumulating in the brain are proposed to trigger Alzheimer’s disease (AD). However, molecular cascades underlying their toxicity are poorly defined. Here, we explored a novel hypothesis for Aβ42 toxicity that arises from its proven affinity for γ-secretases. We hypothesized that the reported increases in Aβ42, particularly in the endolysosomal compartment, promote the establishment of a product feedback inhibitory mechanism on γ-secretases, and thereby impair downstream signaling events. We conducted kinetic analyses of γ-secretase activity in cell-free systems in the presence of Aβ, as well as cell-based and ex vivo assays in neuronal cell lines, neurons, and brain synaptosomes to assess the impact of Aβ on γ-secretases. We show that human Aβ42 peptides, but neither murine Aβ42 nor human Aβ17–42 (p3), inhibit γ-secretases and trigger accumulation of unprocessed substrates in neurons, including C-terminal fragments (CTFs) of APP, p75, and pan-cadherin. Moreover, Aβ42 treatment dysregulated cellular homeostasis, as shown by the induction of p75-dependent neuronal death in two distinct cellular systems. Our findings raise the possibility that pathological elevations in Aβ42 contribute to cellular toxicity via the γ-secretase inhibition, and provide a novel conceptual framework to address Aβ toxicity in the context of γ-secretase-dependent homeostatic signaling.