Sister kinetochore splitting and precocious disintegration of bivalents could explain the maternal age effect

  1. Agata P Zielinska
  2. Zuzana Holubcova
  3. Martyn Blayney
  4. Kay Elder
  5. Melina Schuh  Is a corresponding author
  1. Medical Research Council, United Kingdom
  2. Bourn Hall Clinic, United Kingdom

Abstract

Aneuploidy in human eggs is the leading cause of pregnancy loss and Down's syndrome. Aneuploid eggs result from chromosome segregation errors when an egg develops from a progenitor cell, called an oocyte. The mechanisms that lead to an increase in aneuploidy with advanced maternal age are largely unclear. Here, we show that many sister kinetochores in human oocytes are separated and do not behave as a single functional unit during the first meiotic division. Having separated sister kinetochores allowed bivalents to rotate by 90 degrees on the spindle and increased the risk of merotelic kinetochore-microtubule attachments. Advanced maternal age led to an increase in sister kinetochore separation, rotated bivalents and merotelic attachments. Chromosome arm cohesion was weakened, and the fraction of bivalents that precociously dissociated into univalents was increased. Together, our data reveal multiple age-related changes in chromosome architecture that could explain why oocyte aneuploidy increases with advanced maternal age.

Article and author information

Author details

  1. Agata P Zielinska

    Laboratory of Molecular Biology, Medical Research Council, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Zuzana Holubcova

    Laboratory of Molecular Biology, Medical Research Council, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Martyn Blayney

    Bourn Hall Clinic, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Kay Elder

    Bourn Hall Clinic, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Melina Schuh

    Laboratory of Molecular Biology, Medical Research Council, Cambridge, United Kingdom
    For correspondence
    mschuh@mrc-lmb.cam.ac.uk
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Human subjects: The use of immature unfertilized human oocytes in this study has been approved by the UK's National Research Ethics Service under the REC reference 11/EE/0346; IRAS Project ID 84952. Immature unfertilized oocytes were donated by women receiving assisted reproduction treatment at Bourn Hall Clinic (Cambridge, UK).

Copyright

© 2015, Zielinska et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,436
    views
  • 1,006
    downloads
  • 114
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Agata P Zielinska
  2. Zuzana Holubcova
  3. Martyn Blayney
  4. Kay Elder
  5. Melina Schuh
(2015)
Sister kinetochore splitting and precocious disintegration of bivalents could explain the maternal age effect
eLife 4:e11389.
https://doi.org/10.7554/eLife.11389

Share this article

https://doi.org/10.7554/eLife.11389

Further reading

    1. Cell Biology
    2. Genetics and Genomics
    Róża K Przanowska, Yuechuan Chen ... Anindya Dutta
    Research Article

    The six-subunit ORC is essential for the initiation of DNA replication in eukaryotes. Cancer cell lines in culture can survive and replicate DNA replication after genetic inactivation of individual ORC subunits, ORC1, ORC2, or ORC5. In primary cells, ORC1 was dispensable in the mouse liver for endo-reduplication, but this could be explained by the ORC1 homolog, CDC6, substituting for ORC1 to restore functional ORC. Here, we have created mice with a conditional deletion of ORC2, which does not have a homolog. Although mouse embryo fibroblasts require ORC2 for proliferation, mouse hepatocytes synthesize DNA in cell culture and endo-reduplicate in vivo without ORC2. Mouse livers endo-reduplicate after simultaneous deletion of ORC1 and ORC2 both during normal development and after partial hepatectomy. Since endo-reduplication initiates DNA synthesis like normal S phase replication these results unequivocally indicate that primary cells, like cancer cell lines, can load MCM2-7 and initiate replication without ORC.

    1. Cell Biology
    2. Developmental Biology
    Pavan K Nayak, Arul Subramanian, Thomas F Schilling
    Research Article Updated

    Mechanical forces play a critical role in tendon development and function, influencing cell behavior through mechanotransduction signaling pathways and subsequent extracellular matrix (ECM) remodeling. Here, we investigate the molecular mechanisms by which tenocytes in developing zebrafish embryos respond to muscle contraction forces during the onset of swimming and cranial muscle activity. Using genome-wide bulk RNA sequencing of FAC-sorted tenocytes we identify novel tenocyte markers and genes involved in tendon mechanotransduction. Embryonic tendons show dramatic changes in expression of matrix remodeling associated 5b (mxra5b), matrilin 1 (matn1), and the transcription factor kruppel-like factor 2a (klf2a), as muscles start to contract. Using embryos paralyzed either by loss of muscle contractility or neuromuscular stimulation we confirm that muscle contractile forces influence the spatial and temporal expression patterns of all three genes. Quantification of these gene expression changes across tenocytes at multiple tendon entheses and myotendinous junctions reveals that their responses depend on force intensity, duration, and tissue stiffness. These force-dependent feedback mechanisms in tendons, particularly in the ECM, have important implications for improved treatments of tendon injuries and atrophy.