1. Ecology
  2. Neuroscience
Download icon

Communication: Listening in

  1. Erich D Jarvis  Is a corresponding author
  1. Duke University Medical Center, United States
Insight
  • Cited 0
  • Views 876
  • Annotations
Cite this article as: eLife 2015;4:e11665 doi: 10.7554/eLife.11665

Abstract

Zebra finches communicate with each other in ways that are more complex than previously thought.

Main text

Many vertebrate species communicate with sounds. These sounds can range from simple innate calls, such as monkey alarm calls, to complex sequences of sounds that need to be learned, such as bird song and human speech. However, it has been challenging to study these more complex sounds under natural conditions because, for many years, recording technology has not been good enough to record multiple animals at once. Thus, researchers often resorted to using a combination of a single microphone and constant visual observation to study one, two or three animals at a time.

Now, in eLife, Lisa Gill, Wolfgang Goymann, Andries Ter Maat and Manfred Gahr of the Max Plank Institute for Ornithology report how backpacks containing miniature wireless microphones can be mounted onto the backs of zebra finches and then used to listen in as these songbirds interact with each other (Gill et al., 2015). A typical zebra finch is the size of a mouse and weighs about 15 grams, so the backpack had to be light and attached in way that did not prevent the bird from flying or copulating. The backpack, which weighed about 1 gram, was attached so that the microphone faced the animal, whereas the antenna that sent the signal to the recording apparatus pointed away from the bird (see image). The Max Planck team also developed software that automatically categorizes vocal interactions between two or more animals.

Prior to this study, the best way to record multiple animals in the same location was to use an array of microphones, followed by sophisticated sorting software to identify which animals were vocalizing, as was recently done with mice (Neunuebel et al., 2015). Last year Alexei Vyssotski and co-workers in Moscow and Zurich used microphones attached to zebra finches for the first time (Anisimov et al., 2014): however, the data were stored on a chip in the backpack, and had to be manually uploaded to a computer later, rather than being transmitted to the computer wirelessly in real time as done by Gill et al.

The subsequent experiment designed by Gill et al. is reminiscent of a reality television show. Imagine having a group of single young men living in a house for an extended period time, and a group of single young women living in a different house. Then select four of the men and four of the women, attach wireless microphones to them, move them to a large house in the tropics with four bedrooms, and record every word they say for 20 days. This is what was done with the birds, except that the house was a large, hot and humid aviary, and the rooms were nest boxes, provided with nest material nearby. No rules were enforced on the animals, so they were free to wander, socialize, mate and fight as they wished.

Gill et al. found that the communications between the birds changed over the course of the 20 days, partly depending on who paired with whom. At first all the birds produced a flurry of long distance calls, and each bird responded a lot to all other birds. After several days, as soon as they found the nest material, individual birds started to form opposite-sex pairs, communicating with each other much more (by a factor of five or six) than with the other birds. The birds in a pair also tended to use ‘cackle and whine’ calls to communicate with each other, but not with other birds. ‘Tet’ calls were produced more often by males during unpaired and non-nesting social contexts, whereas ‘stack’ calls were produced more often by females during unpaired and nest defense contexts.

A remarkable finding was that after 15–20 days, the male–female pairs that used the same call types to communicate with each other were more successful in laying and incubating eggs. Those that communicated more often with different call types were unsuccessful mates. These findings indicate that proper communication is important for forming successful pair bonds and producing offspring, and show that there is more to the chatter of birds than randomly produced calls.

Relatively few animals are capable of vocal learning: those that are include songbirds, parrots, hummingbirds, humans, bats, elephants, dolphins and seals (Petkov and Jarvis, 2012). In zebra finches, as in many other songbirds that live in temperate climates, males have the ability to learn how to produce novel vocalizations, whereas females have lost the this ability (Odom et al., 2014) for both song and calls (Simpson and Vicario, 1990). However, the results of Gill et al. could mean that although female zebra finches cannot imitate new sounds, they still learn when and where to produce their innate sounds through social learning.

The results of the Max Planck team might stimulate further research on other species that vocalize, including non-human primates such as marmosets, macaques and chimpanzees: both the males and females of these species can only produce innate vocalizations but, like female zebra finches, they are capable of learning when and where to produce these sounds through social experience (Petkov and Jarvis, 2012; Takahashi et al., 2015). In the long term this combination of wireless technology and sophisticated software may help us learn more about the rules that govern vocal communication in animals.

References

  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
    Brain pathways for learned and unlearned vocalizations differ in zebra finches
    1. HB Simpson
    2. DS Vicario
    (1990)
    Journal of Neuroscience 10:1541–1556.
  7. 7
    The developmental dynamics of marmoset monkey vocal production
    1. DY Takahashi
    2. AR Fenley
    3. Y Teramoto
    4. DZ Narayanan
    5. JI Borjon
    6. P Holmes
    7. AA Ghazanfar
    (2015)
    Science 349:734–738.

Article and author information

Author details

  1. Erich D Jarvis

    Department of Neurobiology and the Howard Hughes Medical Institute, Duke University Medical Center, Durham, United States
    For correspondence
    jarvis@neuro.duke.edu
    Competing interests
    The author declares that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8931-5049

Publication history

  1. Version of Record published: October 21, 2015 (version 1)

Copyright

© 2015, Jarvis

This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 876
    Page views
  • 74
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Ecology
    2. Evolutionary Biology
    Susanne RK Zajitschek et al.
    Research Article Updated

    Biomedical and clinical sciences are experiencing a renewed interest in the fact that males and females differ in many anatomic, physiological, and behavioural traits. Sex differences in trait variability, however, are yet to receive similar recognition. In medical science, mammalian females are assumed to have higher trait variability due to estrous cycles (the ‘estrus-mediated variability hypothesis’); historically in biomedical research, females have been excluded for this reason. Contrastingly, evolutionary theory and associated data support the ‘greater male variability hypothesis’. Here, we test these competing hypotheses in 218 traits measured in >26,900 mice, using meta-analysis methods. Neither hypothesis could universally explain patterns in trait variability. Sex bias in variability was trait-dependent. While greater male variability was found in morphological traits, females were much more variable in immunological traits. Sex-specific variability has eco-evolutionary ramifications, including sex-dependent responses to climate change, as well as statistical implications including power analysis considering sex difference in variance.

    1. Ecology
    2. Microbiology and Infectious Disease
    Julie Teresa Shapiro et al.
    Research Article Updated

    Antimicrobial resistance (AMR) is a global threat. A better understanding of how antibiotic use and between-ward patient transfers (or connectivity) impact population-level AMR in hospital networks can help optimize antibiotic stewardship and infection control strategies. Here, we used a metapopulation framework to explain variations in the incidence of infections caused by seven major bacterial species and their drug-resistant variants in a network of 357 hospital wards. We found that ward-level antibiotic consumption volume had a stronger influence on the incidence of the more resistant pathogens, while connectivity had the most influence on hospital-endemic species and carbapenem-resistant pathogens. Piperacillin-tazobactam consumption was the strongest predictor of the cumulative incidence of infections resistant to empirical sepsis therapy. Our data provide evidence that both antibiotic use and connectivity measurably influence hospital AMR. Finally, we provide a ranking of key antibiotics by their estimated population-level impact on AMR that might help inform antimicrobial stewardship strategies.