A cholinergic feedback circuitto regulate striatal population uncertainty and optimize reinforcement learning

  1. Nicholas T Franklin
  2. Michael J Frank  Is a corresponding author
  1. Brown University, United States

Abstract

Convergent evidence suggeststhat the basal ganglia support reinforcement learning by adjusting action values according to reward prediction errors. However, adaptive behavior in stochasticenvironments requires the consideration of uncertainty to dynamically adjust the learning rate. We consider how cholinergic tonically active interneurons (TANs) may endow the striatum with such a mechanismin computational models spanning three Marr's levels of analysis. In the neural model, TANs modulate the excitability of spiny neurons, theirpopulation response to reinforcement, and hence the effective learning rate. Long TAN pauses facilitated robustness to spuriousoutcomes by increasing divergence in synaptic weights between neurons coding for alternative action values,whereas short TAN pauses facilitated stochastic behavior but increased responsiveness to change-points in outcome contingencies.A feedback control system allowed TAN pauses to be dynamically modulated by uncertainty across the spiny neuron population,allowing the system to self-tune and optimizeperformance across stochastic environments.

Article and author information

Author details

  1. Nicholas T Franklin

    Department of Cognitive, Linguistic and Psychological Sciences, Brown Institute for Brain Science, Brown University, Providence, United States
    Competing interests
    No competing interests declared.
  2. Michael J Frank

    Department of Cognitive, Linguistic and Psychological Sciences, Brown Institute for Brain Science, Brown University, Providence, United States
    For correspondence
    Michael_Frank@brown.edu
    Competing interests
    Michael J Frank, Reviewing editor, eLife.

Copyright

© 2015, Franklin & Frank

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,022
    views
  • 575
    downloads
  • 80
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Citations by DOI

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Nicholas T Franklin
  2. Michael J Frank
(2015)
A cholinergic feedback circuitto regulate striatal population uncertainty and optimize reinforcement learning
eLife 4:e12029.
https://doi.org/10.7554/eLife.12029

Share this article

https://doi.org/10.7554/eLife.12029