A genome-wide resource for the analysis of protein localisation in Drosophila

  1. Mihail Sarov
  2. Christiane Barz
  3. Helena Jambor
  4. Marco Y Hein
  5. Christopher Schmied
  6. Dana Suchold
  7. Bettina Stender
  8. Stephan Janosch
  9. Vinay Vikas KJ
  10. RT Krishnan
  11. Aishwarya Krishnamoorthy
  12. Irene RS Ferreira
  13. Radoslaw K Ejsmont
  14. Katja Finkl
  15. Susanne Hasse
  16. Philipp Kämpfer
  17. Nicole Plewka
  18. Elisabeth Vinis
  19. Siegfried Schloissnig
  20. Elisabeth Knust
  21. Volker Hartenstein
  22. Matthias Mann
  23. Mani Ramaswami
  24. K VijayRaghavan
  25. Pavel Tomancak
  26. Frank Schnorrer  Is a corresponding author
  1. Max Planck Institute of Cell Biology and Genetics, Germany
  2. Max Planck Institute of Biochemistry, Germany
  3. Tata Institute of Fundamental Research, India
  4. Centre for Cellular and Molecular Platforms, National Centre for Biological Sciences, India
  5. Heidelberg Institute of Theoretical Studies, Germany
  6. University of California, Los Angeles, United States
  7. Trinity College Dublin, Ireland

Abstract

The Drosophila genome contains >13,000 protein coding genes, the majority of which remain poorly investigated. Important reasons include the lack of antibodies or reporter constructs to visualise these proteins. Here we present a genome-wide fosmid library of 10,000 GFP-tagged clones, comprising tagged genes and most of their regulatory information. For 880 tagged proteins we created transgenic lines and for a total of 207 lines we assessed protein expression and localisation in ovaries, embryos, pupae or adults by stainings and live imaging approaches. Importantly, we visualised many proteins at endogenous expression levels and found a large fraction of them localising to subcellular compartments. By applying genetic complementation tests we estimate that about two-thirds of the tagged proteins are functional. Moreover, these tagged proteins enable interaction proteomics from developing pupae and adult flies. Taken together, this resource will boost systematic analysis of protein expression and localisation in various cellular and developmental contexts.

Article and author information

Author details

  1. Mihail Sarov

    Max Planck Institute of Cell Biology and Genetics, Dresden, Germany
    Competing interests
    No competing interests declared.
  2. Christiane Barz

    Muscle Dynamics Group, Max Planck Institute of Biochemistry, Martinsried, Germany
    Competing interests
    No competing interests declared.
  3. Helena Jambor

    Max Planck Institute of Cell Biology and Genetics, Dresden, Germany
    Competing interests
    No competing interests declared.
  4. Marco Y Hein

    Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
    Competing interests
    No competing interests declared.
  5. Christopher Schmied

    Max Planck Institute of Cell Biology and Genetics, Dresden, Germany
    Competing interests
    No competing interests declared.
  6. Dana Suchold

    Max Planck Institute of Cell Biology and Genetics, Dresden, Germany
    Competing interests
    No competing interests declared.
  7. Bettina Stender

    Muscle Dynamics Group, Max Planck Institute of Biochemistry, Martinsried, Germany
    Competing interests
    No competing interests declared.
  8. Stephan Janosch

    Max Planck Institute of Cell Biology and Genetics, Dresden, Germany
    Competing interests
    No competing interests declared.
  9. Vinay Vikas KJ

    Centre for Cellular and Molecular Platforms, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
    Competing interests
    No competing interests declared.
  10. RT Krishnan

    Centre for Cellular and Molecular Platforms, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
    Competing interests
    No competing interests declared.
  11. Aishwarya Krishnamoorthy

    Tata Institute of Fundamental Research, Centre for Cellular and Molecular Platforms, National Centre for Biological Sciences, Bangalore, India
    Competing interests
    No competing interests declared.
  12. Irene RS Ferreira

    Muscle Dynamics Group, Max Planck Institute of Biochemistry, Martinsried, Germany
    Competing interests
    No competing interests declared.
  13. Radoslaw K Ejsmont

    Max Planck Institute of Cell Biology and Genetics, Dresden, Germany
    Competing interests
    No competing interests declared.
  14. Katja Finkl

    Muscle Dynamics Group, Max Planck Institute of Biochemistry, Martinsried, Germany
    Competing interests
    No competing interests declared.
  15. Susanne Hasse

    Max Planck Institute of Cell Biology and Genetics, Dresden, Germany
    Competing interests
    No competing interests declared.
  16. Philipp Kämpfer

    Heidelberg Institute of Theoretical Studies, Heidelberg, Germany
    Competing interests
    No competing interests declared.
  17. Nicole Plewka

    Muscle Dynamics Group, Max Planck Institute of Biochemistry, Martinsried, Germany
    Competing interests
    No competing interests declared.
  18. Elisabeth Vinis

    Max Planck Institute of Cell Biology and Genetics, Dresden, Germany
    Competing interests
    No competing interests declared.
  19. Siegfried Schloissnig

    Heidelberg Institute of Theoretical Studies, Heidelberg, Germany
    Competing interests
    No competing interests declared.
  20. Elisabeth Knust

    Max Planck Institute of Cell Biology and Genetics, Dresden, Germany
    Competing interests
    No competing interests declared.
  21. Volker Hartenstein

    Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  22. Matthias Mann

    Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
    Competing interests
    No competing interests declared.
  23. Mani Ramaswami

    Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
    Competing interests
    Mani Ramaswami, Reviewing editor, eLife.
  24. K VijayRaghavan

    Centre for Cellular and Molecular Platforms, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
    Competing interests
    K VijayRaghavan, Senior editor, eLife.
  25. Pavel Tomancak

    Max Planck Institute of Cell Biology and Genetics, Dresden, Germany
    Competing interests
    No competing interests declared.
  26. Frank Schnorrer

    Muscle Dynamics Group, Max Planck Institute of Biochemistry, Martinsried, Germany
    For correspondence
    schnorrer@biochem.mpg.de
    Competing interests
    No competing interests declared.

Reviewing Editor

  1. Hugo J Bellen, Howard Hughes Medical Institute, Baylor College of Medicine, United States

Version history

  1. Received: October 3, 2015
  2. Accepted: February 19, 2016
  3. Accepted Manuscript published: February 20, 2016 (version 1)
  4. Version of Record published: March 14, 2016 (version 2)

Copyright

© 2016, Sarov et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 21,498
    Page views
  • 3,922
    Downloads
  • 222
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Mihail Sarov
  2. Christiane Barz
  3. Helena Jambor
  4. Marco Y Hein
  5. Christopher Schmied
  6. Dana Suchold
  7. Bettina Stender
  8. Stephan Janosch
  9. Vinay Vikas KJ
  10. RT Krishnan
  11. Aishwarya Krishnamoorthy
  12. Irene RS Ferreira
  13. Radoslaw K Ejsmont
  14. Katja Finkl
  15. Susanne Hasse
  16. Philipp Kämpfer
  17. Nicole Plewka
  18. Elisabeth Vinis
  19. Siegfried Schloissnig
  20. Elisabeth Knust
  21. Volker Hartenstein
  22. Matthias Mann
  23. Mani Ramaswami
  24. K VijayRaghavan
  25. Pavel Tomancak
  26. Frank Schnorrer
(2016)
A genome-wide resource for the analysis of protein localisation in Drosophila
eLife 5:e12068.
https://doi.org/10.7554/eLife.12068

Share this article

https://doi.org/10.7554/eLife.12068

Further reading

    1. Developmental Biology
    2. Neuroscience
    Athina Keramidioti, Sandra Schneid ... Charles N David
    Research Article

    The Hydra nervous system is the paradigm of a ‘simple nerve net’. Nerve cells in Hydra, as in many cnidarian polyps, are organized in a nerve net extending throughout the body column. This nerve net is required for control of spontaneous behavior: elimination of nerve cells leads to polyps that do not move and are incapable of capturing and ingesting prey (Campbell, 1976). We have re-examined the structure of the Hydra nerve net by immunostaining fixed polyps with a novel antibody that stains all nerve cells in Hydra. Confocal imaging shows that there are two distinct nerve nets, one in the ectoderm and one in the endoderm, with the unexpected absence of nerve cells in the endoderm of the tentacles. The nerve nets in the ectoderm and endoderm do not contact each other. High-resolution TEM (transmission electron microscopy) and serial block face SEM (scanning electron microscopy) show that the nerve nets consist of bundles of parallel overlapping neurites. Results from transgenic lines show that neurite bundles include different neural circuits and hence that neurites in bundles require circuit-specific recognition. Nerve cell-specific innexins indicate that gap junctions can provide this specificity. The occurrence of bundles of neurites supports a model for continuous growth and differentiation of the nerve net by lateral addition of new nerve cells to the existing net. This model was confirmed by tracking newly differentiated nerve cells.

    1. Developmental Biology
    Marta Grzonka, Hisham Bazzi
    Research Article

    SAS‑6 (SASS6) is essential for centriole formation in human cells and other organisms but its function in mouse is unclear. Here, we report that Sass6‑mutant mouse embryos lack centrioles, activate the mitotic surveillance cell death pathway and arrest at mid‑gestation. In contrast, SAS‑6 is not required for centriole formation in mouse embryonic stem cells (mESCs), but is essential to maintain centriole architecture. Of note, centrioles appeared after just one day of culture of Sass6‑mutant blastocysts, from which mESCs are derived. Conversely, the number of cells with centrosomes is drastically decreased upon the exit from a mESC pluripotent state. At the mechanistic level, the activity of the master kinase in centriole formation, PLK4, associated with increased centriolar and centrosomal protein levels, endow mESCs with the robustness in using SAS‑6‑independent centriole-duplication pathways. Collectively, our data suggest a differential requirement for mouse SAS‑6 in centriole formation or integrity depending on PLK4 and centrosome composition.