Protein Tagging: Building a ladder to Hershey Heaven
When Alfred Hershey, one of the founders of molecular biology, was asked to describe his idea of scientific happiness, he said that it would be “to have one experiment that works, and keep doing it all the time”. By this he meant that it would be ideal to be able to conduct every experiment using the same tools and methods, and yet always generate new and interesting data (see Creager, 2001). However, molecular geneticists have not yet reached this “Hershey Heaven”. Today, when researchers want to discover more about a protein in an animal – for example, which tissues and cell types express the protein – they usually have to rely on antibodies that bind to the protein of interest. Unfortunately, good antibodies do not exist for most proteins, and it is time-consuming and expensive to generate and characterize new antibodies.
Biologists who work on the model organism Drosophila melanogaster have addressed this problem by making “protein traps”. This involves inserting specific sequences into genes in the fruit fly’s genome in order to mark its proteins in a way that makes them easily identifiable without a specific antibody. Some inserted sequences directly encode markers such as fluorescent proteins, while others can be replaced by different marker sequences at a later stage (e.g., Venken et al., 2011; Nagarkar-Jaiswal et al., 2015). Another approach employs transgenic flies that carry an extra functional copy of a gene, with this "third copy" being tagged. Most Drosophila genes are relatively compact, which means that they can be contained within DNA fragments that are short enough to be efficiently inserted into the genome.
Now, in eLife, Mihail Sarov, Pavel Tomancak, Frank Schnorrer and colleagues describe a new resource of tagged genes that will be intensively used by all Drosophila biologists (Sarov et al., 2016). The researchers – who are based at Max Planck Institutes in Dresden and Martinsried, and other centers in India, the United States and Ireland – generated a library of tagged clones in bacteria for almost 10,000 Drosophila genes (which is ~75% of all Drosophila genes). Each protein has a multipurpose tag added to its C-terminus, which provides a number of ways to localize or purify a protein of interest, without the need for specific antibodies. The clones are available to the community and can be injected directly into fruit fly embryos to make transgenic lines via the ‘third copy’ strategy. Sarov et al. have already made 880 transgenic lines from the clones, and their data suggest that about two-thirds of the tagged genes will produce functional proteins.
Sarov et al. used the green fluorescent protein in the multipurpose tag to confirm that many of the tagged proteins tended to localize correctly within living cells. They were also able to track protein expression and localization in live animals. Finally, Sarov et al. also demonstrated that tags could be used to purify proteins of interest, along with other components of protein complexes that contain them.
Researchers working with Drosophila and other model systems often conduct large genetic screens to identify the genes that control various biological processes. It would be ideal if any new set of genes identified in such a screen could be examined by using a set of transgenic lines and/or clones in which all the genes are tagged in the same way and can be studied using the same tools. The new resource developed by Sarov et al. is a ladder leading toward this experimental heaven, just as Alfred Hershey imagined it.
In the future, researchers will be able to obtain clones for any gene within the new library and make their own transgenic lines. They will then, it is hoped, deposit these new lines in public collections to expand the number available for future study. Finally, Sarov et al. have generated a ‘pre-tagged’ library that is also publicly available. Researchers will now be able to use high-throughput strategies to insert any tags they wish into the genes in this library to make ‘second-generation’ libraries. For example, these could include proteins tagged with different colors so that multiple proteins could be visualized at the same time.
Although this new resource will greatly help work on most Drosophila proteins, it comes with some limitations. First, some proteins will be inactivated or destabilized by the addition of tags to the C-terminus. Second, large tags like the ones used in this library may alter the localization or expression of some proteins. Third, some genes encode sets of proteins with different C-termini, and each “isoform” of the protein may have different localizations and/or expression patterns. The present library installs tags on only one of these isoforms. Fourth, ~20% of Drosophila genes are too long to be transferred via traditional techniques. All of these problems can be addressed by using CRISPR-based methods to insert tags into any desired position within a gene (e.g., Chen et al., 2015; Gratz et al., 2015). Each gene studied in this manner will represent a separate project. However, if CRISPR-tagged lines for the problem genes also become publicly available, Drosophila biologists may eventually be able to study any protein they wish using only publicly available materials. This will greatly speed up research, make it more affordable, and make Hershey Heaven a realistic scenario for the Drosophila community.
References
-
CRISPR-Cas9 genome editing in DrosophilaCurrent Protocols in Molecular Biology 111:31–20.https://doi.org/10.1002/0471142727.mb3102s111
Article and author information
Author details
Publication history
Copyright
© 2016, Zinn
This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 1,197
- views
-
- 85
- downloads
-
- 0
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Developmental Biology
The structural integrity of the sperm is crucial for male fertility, defects in sperm head-tail linkage and flagellar axoneme are associated with acephalic spermatozoa syndrome (ASS) and the multiple morphological abnormalities of the sperm flagella (MMAF). Notably, impaired head-tail coupling apparatus (HTCA) often accompanies defects in the flagellum structure, however, the molecular mechanisms underlying this phenomenon remain elusive. Here, we identified an evolutionarily conserved coiled-coil domain-containing (CCDC) protein, CCDC113, and found the disruption of CCDC113 produced spermatozoa with disorganized sperm flagella and HTCA, which caused male infertility. Further analysis revealed that CCDC113 could bind to CFAP57 and CFAP91, and function as an adaptor protein for the connection of radial spokes, nexin-dynein regulatory complex (N-DRC), and doublet microtubules (DMTs) in the sperm axoneme. Moreover, CCDC113 was identified as a structural component of HTCA, collaborating with SUN5 and CENTLEIN to connect sperm head to tail during spermiogenesis. Together, our studies reveal that CCDC113 serve as a critical hub for sperm axoneme and HTCA stabilization in mice, providing insights into the potential pathogenesis of infertility associated with human CCDC113 mutations.
-
- Developmental Biology
Rhythmic and sequential segmentation of the growing vertebrate body relies on the segmentation clock, a multi-cellular oscillating genetic network. The clock is visible as tissue-level kinematic waves of gene expression that travel through the presomitic mesoderm (PSM) and arrest at the position of each forming segment. Here, we test how this hallmark wave pattern is driven by culturing single maturing PSM cells. We compare their cell-autonomous oscillatory and arrest dynamics to those we observe in the embryo at cellular resolution, finding similarity in the relative slowing of oscillations and arrest in concert with differentiation. This shows that cell-extrinsic signals are not required by the cells to instruct the developmental program underlying the wave pattern. We show that a cell-autonomous timing activity initiates during cell exit from the tailbud, then runs down in the anterior-ward cell flow in the PSM, thereby using elapsed time to provide positional information to the clock. Exogenous FGF lengthens the duration of the cell-intrinsic timer, indicating extrinsic factors in the embryo may regulate the segmentation clock via the timer. In sum, our work suggests that a noisy cell-autonomous, intrinsic timer drives the slowing and arrest of oscillations underlying the wave pattern, while extrinsic factors in the embryo tune this timer’s duration and precision. This is a new insight into the balance of cell-intrinsic and -extrinsic mechanisms driving tissue patterning in development.