Regulatory polymorphisms modulate the expression of HLA class II molecules and promote autoimmunity

  1. Prithvi Raj
  2. Ekta Rai
  3. Ran Song
  4. Shaheen Khan
  5. Benjamin E Wakeland
  6. Kasthuribai Viswanathan
  7. Carlos Arana
  8. Chaoying Liang
  9. Bo Zhang
  10. Igor Dozmorov
  11. Ferdicia Carr-Johnson
  12. Mitja Mitrovic
  13. Graham B Wiley
  14. Jennifer A Kelly
  15. Bernard R Lauwerys
  16. Nancy J Olsen
  17. Chris Cotsapas
  18. Christine K Garcia
  19. Carol A Wise
  20. John B Harley
  21. Swapan K Nath
  22. Judith A James
  23. Chaim O Jacob
  24. Betty P Tsao
  25. Chandrashekhar Pasare
  26. David R Karp
  27. Quan Zhen Li
  28. Patrick M Gaffney
  29. Edward K Wakeland  Is a corresponding author
  1. University of Texas Southwestern Medical Center, United States
  2. Yale School of Medicine, United States
  3. Oklahoma Medical Research Foundation, United States
  4. Université catholique de Louvain, Belgium
  5. Penn State Medical School, United States
  6. Texas Scottish Rite Hospital for Children, United States
  7. Cincinnati Children's Hospital Medical Center, United States
  8. University of Southern California, United States
  9. University of California, Los Angeles, United States

Abstract

Targeted sequencing of sixteen SLE risk loci among 1349 Caucasian cases and controls produced a comprehensive dataset of the variations causing susceptibility to systemic lupus erythematosus (SLE). Two independent disease association signals in the HLA-D region identified two regulatory regions containing 3562 polymorphisms that modified thirty-seven transcription factor binding sites. These extensive functional variations are a new and potent facet of HLA polymorphism. Variations modifying the consensus binding motifs of IRF4 and CTCF in the XL9 regulatory complex modified the transcription of HLA-DRB1, HLA-DQA1 and HLA-DQB1 in a chromosome-specific manner, resulting in a 2.5-fold increase in the surface expression of HLA-DR and DQ molecules on dendritic cells with SLE risk genotypes, which increases to >4-fold after stimulation. Similar analyses of fifteen other SLE risk loci identified 1206 functional variants tightly linked with disease-associated SNPs and demonstrated that common disease alleles contain multiple causal variants modulating multiple immune system genes.

Article and author information

Author details

  1. Prithvi Raj

    Department of Immunology, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Ekta Rai

    Department of Immunology, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Ran Song

    Department of Immunology, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Shaheen Khan

    Department of Immunology, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Benjamin E Wakeland

    Department of Immunology, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Kasthuribai Viswanathan

    Department of Immunology, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Carlos Arana

    Department of Immunology, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Chaoying Liang

    Department of Immunology, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Bo Zhang

    Department of Immunology, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Igor Dozmorov

    Department of Immunology, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Ferdicia Carr-Johnson

    Department of Immunology, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Mitja Mitrovic

    Department of Neurology, Yale School of Medicine, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Graham B Wiley

    Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. Jennifer A Kelly

    Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, United States
    Competing interests
    The authors declare that no competing interests exist.
  15. Bernard R Lauwerys

    Pole de pathologies rhumatismales, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Bruxelles, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  16. Nancy J Olsen

    Division of Rheumatology, Department of Medicine, Penn State Medical School, Hershey, United States
    Competing interests
    The authors declare that no competing interests exist.
  17. Chris Cotsapas

    Department of Neurology, Yale School of Medicine, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  18. Christine K Garcia

    Eugene McDermott Center for Human Growth and Development, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  19. Carol A Wise

    Sarah M. and Charles E. Seay Center for Musculoskeletal Research, Texas Scottish Rite Hospital for Children, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  20. John B Harley

    Cincinnati VA Medical Center, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
    Competing interests
    The authors declare that no competing interests exist.
  21. Swapan K Nath

    Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, United States
    Competing interests
    The authors declare that no competing interests exist.
  22. Judith A James

    Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, United States
    Competing interests
    The authors declare that no competing interests exist.
  23. Chaim O Jacob

    Department of Medicine, University of Southern California, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  24. Betty P Tsao

    Department of Medicine, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  25. Chandrashekhar Pasare

    Department of Immunology, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  26. David R Karp

    Rheumatic Diseases Division, Department of Medicine, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  27. Quan Zhen Li

    Department of Immunology, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  28. Patrick M Gaffney

    Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, United States
    Competing interests
    The authors declare that no competing interests exist.
  29. Edward K Wakeland

    Department of Immunology, University of Texas Southwestern Medical Center, Dallas, United States
    For correspondence
    edward.wakeland@utsouthwestern.edu
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Jonathan Flint, Wellcome Trust Centre for Human Genetics, United Kingdom

Ethics

Human subjects: All the study subjects gave their written informed consent for the study. All the research protocols and methods employed were approved by UT Southwestern Institutional Review Board.

Version history

  1. Received: October 5, 2015
  2. Accepted: February 13, 2016
  3. Accepted Manuscript published: February 15, 2016 (version 1)
  4. Version of Record published: March 17, 2016 (version 2)

Copyright

© 2016, Raj et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,809
    views
  • 1,104
    downloads
  • 110
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Prithvi Raj
  2. Ekta Rai
  3. Ran Song
  4. Shaheen Khan
  5. Benjamin E Wakeland
  6. Kasthuribai Viswanathan
  7. Carlos Arana
  8. Chaoying Liang
  9. Bo Zhang
  10. Igor Dozmorov
  11. Ferdicia Carr-Johnson
  12. Mitja Mitrovic
  13. Graham B Wiley
  14. Jennifer A Kelly
  15. Bernard R Lauwerys
  16. Nancy J Olsen
  17. Chris Cotsapas
  18. Christine K Garcia
  19. Carol A Wise
  20. John B Harley
  21. Swapan K Nath
  22. Judith A James
  23. Chaim O Jacob
  24. Betty P Tsao
  25. Chandrashekhar Pasare
  26. David R Karp
  27. Quan Zhen Li
  28. Patrick M Gaffney
  29. Edward K Wakeland
(2016)
Regulatory polymorphisms modulate the expression of HLA class II molecules and promote autoimmunity
eLife 5:e12089.
https://doi.org/10.7554/eLife.12089

Share this article

https://doi.org/10.7554/eLife.12089

Further reading

    1. Chromosomes and Gene Expression
    2. Genetics and Genomics
    Lisa Baumgartner, Jonathan J Ipsaro ... Julius Brennecke
    Research Advance

    Members of the diverse heterochromatin protein 1 (HP1) family play crucial roles in heterochromatin formation and maintenance. Despite the similar affinities of their chromodomains for di- and tri-methylated histone H3 lysine 9 (H3K9me2/3), different HP1 proteins exhibit distinct chromatin-binding patterns, likely due to interactions with various specificity factors. Previously, we showed that the chromatin-binding pattern of the HP1 protein Rhino, a crucial factor of the Drosophila PIWI-interacting RNA (piRNA) pathway, is largely defined by a DNA sequence-specific C2H2 zinc finger protein named Kipferl (Baumgartner et al., 2022). Here, we elucidate the molecular basis of the interaction between Rhino and its guidance factor Kipferl. Through phylogenetic analyses, structure prediction, and in vivo genetics, we identify a single amino acid change within Rhino’s chromodomain, G31D, that does not affect H3K9me2/3 binding but disrupts the interaction between Rhino and Kipferl. Flies carrying the rhinoG31D mutation phenocopy kipferl mutant flies, with Rhino redistributing from piRNA clusters to satellite repeats, causing pronounced changes in the ovarian piRNA profile of rhinoG31D flies. Thus, Rhino’s chromodomain functions as a dual-specificity module, facilitating interactions with both a histone mark and a DNA-binding protein.

    1. Genetics and Genomics
    2. Neuroscience
    Yifei Weng, Shiyi Zhou ... Coleen T Murphy
    Research Article

    Cognitive decline is a significant health concern in our aging society. Here, we used the model organism C. elegans to investigate the impact of the IIS/FOXO pathway on age-related cognitive decline. The daf-2 Insulin/IGF-1 receptor mutant exhibits a significant extension of learning and memory span with age compared to wild-type worms, an effect that is dependent on the DAF-16 transcription factor. To identify possible mechanisms by which aging daf-2 mutants maintain learning and memory with age while wild-type worms lose neuronal function, we carried out neuron-specific transcriptomic analysis in aged animals. We observed downregulation of neuronal genes and upregulation of transcriptional regulation genes in aging wild-type neurons. By contrast, IIS/FOXO pathway mutants exhibit distinct neuronal transcriptomic alterations in response to cognitive aging, including upregulation of stress response genes and downregulation of specific insulin signaling genes. We tested the roles of significantly transcriptionally-changed genes in regulating cognitive functions, identifying novel regulators of learning and memory. In addition to other mechanistic insights, a comparison of the aged vs young daf-2 neuronal transcriptome revealed that a new set of potentially neuroprotective genes is upregulated; instead of simply mimicking a young state, daf-2 may enhance neuronal resilience to accumulation of harm and take a more active approach to combat aging. These findings suggest a potential mechanism for regulating cognitive function with age and offer insights into novel therapeutic targets for age-related cognitive decline.