Regulatory polymorphisms modulate the expression of HLA class II molecules and promote autoimmunity

  1. Prithvi Raj
  2. Ekta Rai
  3. Ran Song
  4. Shaheen Khan
  5. Benjamin E Wakeland
  6. Kasthuribai Viswanathan
  7. Carlos Arana
  8. Chaoying Liang
  9. Bo Zhang
  10. Igor Dozmorov
  11. Ferdicia Carr-Johnson
  12. Mitja Mitrovic
  13. Graham B Wiley
  14. Jennifer A Kelly
  15. Bernard R Lauwerys
  16. Nancy J Olsen
  17. Chris Cotsapas
  18. Christine K Garcia
  19. Carol A Wise
  20. John B Harley
  21. Swapan K Nath
  22. Judith A James
  23. Chaim O Jacob
  24. Betty P Tsao
  25. Chandrashekhar Pasare
  26. David R Karp
  27. Quan Zhen Li
  28. Patrick M Gaffney
  29. Edward K Wakeland  Is a corresponding author
  1. University of Texas Southwestern Medical Center, United States
  2. Yale School of Medicine, United States
  3. Oklahoma Medical Research Foundation, United States
  4. Université catholique de Louvain, Belgium
  5. Penn State Medical School, United States
  6. Texas Scottish Rite Hospital for Children, United States
  7. Cincinnati Children's Hospital Medical Center, United States
  8. University of Southern California, United States
  9. University of California, Los Angeles, United States

Abstract

Targeted sequencing of sixteen SLE risk loci among 1349 Caucasian cases and controls produced a comprehensive dataset of the variations causing susceptibility to systemic lupus erythematosus (SLE). Two independent disease association signals in the HLA-D region identified two regulatory regions containing 3562 polymorphisms that modified thirty-seven transcription factor binding sites. These extensive functional variations are a new and potent facet of HLA polymorphism. Variations modifying the consensus binding motifs of IRF4 and CTCF in the XL9 regulatory complex modified the transcription of HLA-DRB1, HLA-DQA1 and HLA-DQB1 in a chromosome-specific manner, resulting in a 2.5-fold increase in the surface expression of HLA-DR and DQ molecules on dendritic cells with SLE risk genotypes, which increases to >4-fold after stimulation. Similar analyses of fifteen other SLE risk loci identified 1206 functional variants tightly linked with disease-associated SNPs and demonstrated that common disease alleles contain multiple causal variants modulating multiple immune system genes.

Article and author information

Author details

  1. Prithvi Raj

    Department of Immunology, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Ekta Rai

    Department of Immunology, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Ran Song

    Department of Immunology, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Shaheen Khan

    Department of Immunology, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Benjamin E Wakeland

    Department of Immunology, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Kasthuribai Viswanathan

    Department of Immunology, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Carlos Arana

    Department of Immunology, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Chaoying Liang

    Department of Immunology, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Bo Zhang

    Department of Immunology, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Igor Dozmorov

    Department of Immunology, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Ferdicia Carr-Johnson

    Department of Immunology, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Mitja Mitrovic

    Department of Neurology, Yale School of Medicine, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Graham B Wiley

    Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. Jennifer A Kelly

    Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, United States
    Competing interests
    The authors declare that no competing interests exist.
  15. Bernard R Lauwerys

    Pole de pathologies rhumatismales, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Bruxelles, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  16. Nancy J Olsen

    Division of Rheumatology, Department of Medicine, Penn State Medical School, Hershey, United States
    Competing interests
    The authors declare that no competing interests exist.
  17. Chris Cotsapas

    Department of Neurology, Yale School of Medicine, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  18. Christine K Garcia

    Eugene McDermott Center for Human Growth and Development, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  19. Carol A Wise

    Sarah M. and Charles E. Seay Center for Musculoskeletal Research, Texas Scottish Rite Hospital for Children, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  20. John B Harley

    Cincinnati VA Medical Center, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
    Competing interests
    The authors declare that no competing interests exist.
  21. Swapan K Nath

    Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, United States
    Competing interests
    The authors declare that no competing interests exist.
  22. Judith A James

    Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, United States
    Competing interests
    The authors declare that no competing interests exist.
  23. Chaim O Jacob

    Department of Medicine, University of Southern California, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  24. Betty P Tsao

    Department of Medicine, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  25. Chandrashekhar Pasare

    Department of Immunology, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  26. David R Karp

    Rheumatic Diseases Division, Department of Medicine, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  27. Quan Zhen Li

    Department of Immunology, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  28. Patrick M Gaffney

    Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, United States
    Competing interests
    The authors declare that no competing interests exist.
  29. Edward K Wakeland

    Department of Immunology, University of Texas Southwestern Medical Center, Dallas, United States
    For correspondence
    edward.wakeland@utsouthwestern.edu
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Human subjects: All the study subjects gave their written informed consent for the study. All the research protocols and methods employed were approved by UT Southwestern Institutional Review Board.

Copyright

© 2016, Raj et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,919
    views
  • 1,124
    downloads
  • 115
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Prithvi Raj
  2. Ekta Rai
  3. Ran Song
  4. Shaheen Khan
  5. Benjamin E Wakeland
  6. Kasthuribai Viswanathan
  7. Carlos Arana
  8. Chaoying Liang
  9. Bo Zhang
  10. Igor Dozmorov
  11. Ferdicia Carr-Johnson
  12. Mitja Mitrovic
  13. Graham B Wiley
  14. Jennifer A Kelly
  15. Bernard R Lauwerys
  16. Nancy J Olsen
  17. Chris Cotsapas
  18. Christine K Garcia
  19. Carol A Wise
  20. John B Harley
  21. Swapan K Nath
  22. Judith A James
  23. Chaim O Jacob
  24. Betty P Tsao
  25. Chandrashekhar Pasare
  26. David R Karp
  27. Quan Zhen Li
  28. Patrick M Gaffney
  29. Edward K Wakeland
(2016)
Regulatory polymorphisms modulate the expression of HLA class II molecules and promote autoimmunity
eLife 5:e12089.
https://doi.org/10.7554/eLife.12089

Share this article

https://doi.org/10.7554/eLife.12089

Further reading

    1. Chromosomes and Gene Expression
    2. Genetics and Genomics
    Hans Tobias Gustafsson, Lucas Ferguson ... Oliver J Rando
    Research Article

    Among the major classes of RNAs in the cell, tRNAs remain the most difficult to characterize via deep sequencing approaches, as tRNA structure and nucleotide modifications can each interfere with cDNA synthesis by commonly-used reverse transcriptases (RTs). Here, we benchmark a recently-developed RNA cloning protocol, termed Ordered Two-Template Relay (OTTR), to characterize intact tRNAs and tRNA fragments in budding yeast and in mouse tissues. We show that OTTR successfully captures both full-length tRNAs and tRNA fragments in budding yeast and in mouse reproductive tissues without any prior enzymatic treatment, and that tRNA cloning efficiency can be further enhanced via AlkB-mediated demethylation of modified nucleotides. As with other recent tRNA cloning protocols, we find that a subset of nucleotide modifications leave misincorporation signatures in OTTR datasets, enabling their detection without any additional protocol steps. Focusing on tRNA cleavage products, we compare OTTR with several standard small RNA-Seq protocols, finding that OTTR provides the most accurate picture of tRNA fragment levels by comparison to "ground truth" Northern blots. Applying this protocol to mature mouse spermatozoa, our data dramatically alter our understanding of the small RNA cargo of mature mammalian sperm, revealing a far more complex population of tRNA fragments - including both 5′ and 3′ tRNA halves derived from the majority of tRNAs – than previously appreciated. Taken together, our data confirm the superior performance of OTTR to commercial protocols in analysis of tRNA fragments, and force a reappraisal of potential epigenetic functions of the sperm small RNA payload.

    1. Chromosomes and Gene Expression
    2. Genetics and Genomics
    Omid Gholamalamdari, Tom van Schaik ... Andrew S Belmont
    Research Article

    Models of nuclear genome organization often propose a binary division into active versus inactive compartments yet typically overlook nuclear bodies. Here, we integrated analysis of sequencing and image-based data to compare genome organization in four human cell types relative to three different nuclear locales: the nuclear lamina, nuclear speckles, and nucleoli. Although gene expression correlates mostly with nuclear speckle proximity, DNA replication timing correlates with proximity to multiple nuclear locales. Speckle attachment regions emerge as DNA replication initiation zones whose replication timing and gene composition vary with their attachment frequency. Most facultative LADs retain a partially repressed state as iLADs, despite their positioning in the nuclear interior. Knock out of two lamina proteins, Lamin A and LBR, causes a shift of H3K9me3-enriched LADs from lamina to nucleolus, and a reciprocal relocation of H3K27me3-enriched partially repressed iLADs from nucleolus to lamina. Thus, these partially repressed iLADs appear to compete with LADs for nuclear lamina attachment with consequences for replication timing. The nuclear organization in adherent cells is polarized with nuclear bodies and genomic regions segregating both radially and relative to the equatorial plane. Together, our results underscore the importance of considering genome organization relative to nuclear locales for a more complete understanding of the spatial and functional organization of the human genome.