Autoimmune Disorders: Thinking differently about lupus

  1. Arthur Wuster
  2. Timothy W Behrens  Is a corresponding author
  1. Genentech Inc., United States

It is always exciting when a new study opens up a whole new way of thinking about a scientific problem. This is especially true if the problem is a health condition that is both poorly understood and incurable. Systemic lupus erythematosus (SLE) is an autoimmune disease in which the immune system attacks healthy tissue – including the skin, joints and many internal organs – by mistake. Moreover, the underlying causes of the disease are not fully understood, so available treatments only tackle its symptoms. Now, in eLife, Patrick Gaffney, Edward Wakeland and colleagues – who include Prithvi Raj and Ekta Rai as joint first authors – report an extensive sequencing study of over 1,000 people with SLE that provides many new insights into the genetics of lupus (Raj et al., 2016).

The researchers – who are based at the University of Texas Southwestern Medical Center, the Oklahoma Medical Research Foundation and other centers in the United States, Belgium and India – focused on 16 regions of the human genome that are known to influence a person’s risk of SLE. Their findings highlight the complexity of the changes in the genome that can predispose someone to develop SLE. Amongst the treasure-trove of data is one gold nugget that stands apart: the discovery that the expression level of the so-called Human Leukocyte Antigen (HLA) class II genes contributes to risk of the disease. This is an entirely new twist on an old story.

The HLA genes are found in a long stretch of DNA on chromosome 6 that contains more than 140 protein-coding genes, many of which are important for immune responses (MHC Sequencing Consortium, 1999; de Bakker et al., 2006). The class I genes encode proteins that are found on the outer membrane of all cells, whereas the class II genes encode proteins found only on specialized immune cells called antigen-presenting cells. In both cases, these proteins bind to small fragments of other proteins and then display them to the immune system. Class I proteins display fragments from within our own cells and protect us from cancer, viral infections and certain bacteria that can live within our cells. Class II proteins, on the other hand, display fragments from foreign invaders and are important for instructing the immune system to mount neutralizing responses to parasites and bacteria that live outside of cells.

The HLA class I and II genes are amongst the most variable DNA sequences in the human genome. There are more than 8,000 different variants, or alleles, of class I genes and more than 2,500 class II alleles (Robinson et al., 2015). These alleles encode slightly different proteins, each with the potential to bind to, and display, different protein fragments.

Hundreds of studies have previously linked class I and II variants with the risk of specific diseases and, without exception, these studies have emphasized the sequence diversity of class I and II genes as the important factor (Welter et al., 2014. For example, individuals who carry the class I allele known as B27 are strongly predisposed to developing a type of arthritis called ankylosing spondylitis, whereas people without the B27 allele appear to be protected against the disease (Caffrey and James, 1973).

The new findings show that the HLA class II alleles conferring risk for SLE encode proteins that are found in greater numbers on the surface of antigen-presenting cells than those encoded by alleles that do not increase the risk (Raj et al., 2016). These data suggest, for the first time, that the abundance of class II proteins on antigen-presenting cells could strongly influence risk of certain diseases.

It remains to be determined how differences in the abundance of class II molecules translate to increased disease risk. Higher levels of class II molecules on antigen-presenting cells could increase the chances that circulating immune cells bind to these molecules, and lead to more efficient immune and autoimmune responses. Another possibility is that the extra class II proteins on antigen-presenting cells could adversely affect a developmental process that would normally eliminate those immune cells that have the potential to cause autoimmune disorders.

Further studies now need to extend the analysis of Raj, Rai et al. to the other major class II alleles that are associated with disease in humans. It will also be important to see if this paradigm extends to the class I alleles. These studies will improve our understanding of the earliest events in autoimmunity and hopefully lead to new treatment options for autoimmune disorders.

References

Article and author information

Author details

  1. Arthur Wuster

    Genentech Inc., South San Francisco, United States
    Competing interests
    AW, TWB are full-time employees of Genentech, Inc.
  2. Timothy W Behrens

    Genentech Inc., South San Francisco, United States
    For correspondence
    behrens.tim@gene.com
    Competing interests
    AW, TWB are full-time employees of Genentech, Inc.

Publication history

  1. Version of Record published: March 29, 2016 (version 1)

Copyright

© 2016, Wuster et al.

This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,211
    views
  • 164
    downloads
  • 0
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Arthur Wuster
  2. Timothy W Behrens
(2016)
Autoimmune Disorders: Thinking differently about lupus
eLife 5:e15352.
https://doi.org/10.7554/eLife.15352

Further reading

    1. Chromosomes and Gene Expression
    2. Genetics and Genomics
    Lisa Baumgartner, Jonathan J Ipsaro ... Julius Brennecke
    Research Advance

    Members of the diverse heterochromatin protein 1 (HP1) family play crucial roles in heterochromatin formation and maintenance. Despite the similar affinities of their chromodomains for di- and tri-methylated histone H3 lysine 9 (H3K9me2/3), different HP1 proteins exhibit distinct chromatin-binding patterns, likely due to interactions with various specificity factors. Previously, we showed that the chromatin-binding pattern of the HP1 protein Rhino, a crucial factor of the Drosophila PIWI-interacting RNA (piRNA) pathway, is largely defined by a DNA sequence-specific C2H2 zinc finger protein named Kipferl (Baumgartner et al., 2022). Here, we elucidate the molecular basis of the interaction between Rhino and its guidance factor Kipferl. Through phylogenetic analyses, structure prediction, and in vivo genetics, we identify a single amino acid change within Rhino’s chromodomain, G31D, that does not affect H3K9me2/3 binding but disrupts the interaction between Rhino and Kipferl. Flies carrying the rhinoG31D mutation phenocopy kipferl mutant flies, with Rhino redistributing from piRNA clusters to satellite repeats, causing pronounced changes in the ovarian piRNA profile of rhinoG31D flies. Thus, Rhino’s chromodomain functions as a dual-specificity module, facilitating interactions with both a histone mark and a DNA-binding protein.

    1. Genetics and Genomics
    2. Neuroscience
    Yifei Weng, Shiyi Zhou ... Coleen T Murphy
    Research Article

    Cognitive decline is a significant health concern in our aging society. Here, we used the model organism C. elegans to investigate the impact of the IIS/FOXO pathway on age-related cognitive decline. The daf-2 Insulin/IGF-1 receptor mutant exhibits a significant extension of learning and memory span with age compared to wild-type worms, an effect that is dependent on the DAF-16 transcription factor. To identify possible mechanisms by which aging daf-2 mutants maintain learning and memory with age while wild-type worms lose neuronal function, we carried out neuron-specific transcriptomic analysis in aged animals. We observed downregulation of neuronal genes and upregulation of transcriptional regulation genes in aging wild-type neurons. By contrast, IIS/FOXO pathway mutants exhibit distinct neuronal transcriptomic alterations in response to cognitive aging, including upregulation of stress response genes and downregulation of specific insulin signaling genes. We tested the roles of significantly transcriptionally-changed genes in regulating cognitive functions, identifying novel regulators of learning and memory. In addition to other mechanistic insights, a comparison of the aged vs young daf-2 neuronal transcriptome revealed that a new set of potentially neuroprotective genes is upregulated; instead of simply mimicking a young state, daf-2 may enhance neuronal resilience to accumulation of harm and take a more active approach to combat aging. These findings suggest a potential mechanism for regulating cognitive function with age and offer insights into novel therapeutic targets for age-related cognitive decline.