Autoimmune Disorders: Thinking differently about lupus
It is always exciting when a new study opens up a whole new way of thinking about a scientific problem. This is especially true if the problem is a health condition that is both poorly understood and incurable. Systemic lupus erythematosus (SLE) is an autoimmune disease in which the immune system attacks healthy tissue – including the skin, joints and many internal organs – by mistake. Moreover, the underlying causes of the disease are not fully understood, so available treatments only tackle its symptoms. Now, in eLife, Patrick Gaffney, Edward Wakeland and colleagues – who include Prithvi Raj and Ekta Rai as joint first authors – report an extensive sequencing study of over 1,000 people with SLE that provides many new insights into the genetics of lupus (Raj et al., 2016).
The researchers – who are based at the University of Texas Southwestern Medical Center, the Oklahoma Medical Research Foundation and other centers in the United States, Belgium and India – focused on 16 regions of the human genome that are known to influence a person’s risk of SLE. Their findings highlight the complexity of the changes in the genome that can predispose someone to develop SLE. Amongst the treasure-trove of data is one gold nugget that stands apart: the discovery that the expression level of the so-called Human Leukocyte Antigen (HLA) class II genes contributes to risk of the disease. This is an entirely new twist on an old story.
The HLA genes are found in a long stretch of DNA on chromosome 6 that contains more than 140 protein-coding genes, many of which are important for immune responses (MHC Sequencing Consortium, 1999; de Bakker et al., 2006). The class I genes encode proteins that are found on the outer membrane of all cells, whereas the class II genes encode proteins found only on specialized immune cells called antigen-presenting cells. In both cases, these proteins bind to small fragments of other proteins and then display them to the immune system. Class I proteins display fragments from within our own cells and protect us from cancer, viral infections and certain bacteria that can live within our cells. Class II proteins, on the other hand, display fragments from foreign invaders and are important for instructing the immune system to mount neutralizing responses to parasites and bacteria that live outside of cells.
The HLA class I and II genes are amongst the most variable DNA sequences in the human genome. There are more than 8,000 different variants, or alleles, of class I genes and more than 2,500 class II alleles (Robinson et al., 2015). These alleles encode slightly different proteins, each with the potential to bind to, and display, different protein fragments.
Hundreds of studies have previously linked class I and II variants with the risk of specific diseases and, without exception, these studies have emphasized the sequence diversity of class I and II genes as the important factor (Welter et al., 2014. For example, individuals who carry the class I allele known as B27 are strongly predisposed to developing a type of arthritis called ankylosing spondylitis, whereas people without the B27 allele appear to be protected against the disease (Caffrey and James, 1973).
The new findings show that the HLA class II alleles conferring risk for SLE encode proteins that are found in greater numbers on the surface of antigen-presenting cells than those encoded by alleles that do not increase the risk (Raj et al., 2016). These data suggest, for the first time, that the abundance of class II proteins on antigen-presenting cells could strongly influence risk of certain diseases.
It remains to be determined how differences in the abundance of class II molecules translate to increased disease risk. Higher levels of class II molecules on antigen-presenting cells could increase the chances that circulating immune cells bind to these molecules, and lead to more efficient immune and autoimmune responses. Another possibility is that the extra class II proteins on antigen-presenting cells could adversely affect a developmental process that would normally eliminate those immune cells that have the potential to cause autoimmune disorders.
Further studies now need to extend the analysis of Raj, Rai et al. to the other major class II alleles that are associated with disease in humans. It will also be important to see if this paradigm extends to the class I alleles. These studies will improve our understanding of the earliest events in autoimmunity and hopefully lead to new treatment options for autoimmune disorders.
References
-
The IPD and IMGT/HLA database: allele variant databasesNucleic Acids Research 43:D423–431.https://doi.org/10.1093/nar/gku1161
-
The NHGRI GWAS Catalog, a curated resource of SNP-trait associationsNucleic Acids Research 42:D1001–D1006.https://doi.org/10.1093/nar/gkt1229
Article and author information
Author details
Publication history
Copyright
© 2016, Wuster et al.
This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 2,215
- views
-
- 164
- downloads
-
- 0
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Chromosomes and Gene Expression
- Genetics and Genomics
Models of nuclear genome organization often propose a binary division into active versus inactive compartments yet typically overlook nuclear bodies. Here, we integrated analysis of sequencing and image-based data to compare genome organization in four human cell types relative to three different nuclear locales: the nuclear lamina, nuclear speckles, and nucleoli. Although gene expression correlates mostly with nuclear speckle proximity, DNA replication timing correlates with proximity to multiple nuclear locales. Speckle attachment regions emerge as DNA replication initiation zones whose replication timing and gene composition vary with their attachment frequency. Most facultative LADs retain a partially repressed state as iLADs, despite their positioning in the nuclear interior. Knock out of two lamina proteins, Lamin A and LBR, causes a shift of H3K9me3-enriched LADs from lamina to nucleolus, and a reciprocal relocation of H3K27me3-enriched partially repressed iLADs from nucleolus to lamina. Thus, these partially repressed iLADs appear to compete with LADs for nuclear lamina attachment with consequences for replication timing. The nuclear organization in adherent cells is polarized with nuclear bodies and genomic regions segregating both radially and relative to the equatorial plane. Together, our results underscore the importance of considering genome organization relative to nuclear locales for a more complete understanding of the spatial and functional organization of the human genome.
-
- Chromosomes and Gene Expression
- Genetics and Genomics
Among the major classes of RNAs in the cell, tRNAs remain the most difficult to characterize via deep sequencing approaches, as tRNA structure and nucleotide modifications can each interfere with cDNA synthesis by commonly-used reverse transcriptases (RTs). Here, we benchmark a recently-developed RNA cloning protocol, termed Ordered Two-Template Relay (OTTR), to characterize intact tRNAs and tRNA fragments in budding yeast and in mouse tissues. We show that OTTR successfully captures both full-length tRNAs and tRNA fragments in budding yeast and in mouse reproductive tissues without any prior enzymatic treatment, and that tRNA cloning efficiency can be further enhanced via AlkB-mediated demethylation of modified nucleotides. As with other recent tRNA cloning protocols, we find that a subset of nucleotide modifications leave misincorporation signatures in OTTR datasets, enabling their detection without any additional protocol steps. Focusing on tRNA cleavage products, we compare OTTR with several standard small RNA-Seq protocols, finding that OTTR provides the most accurate picture of tRNA fragment levels by comparison to "ground truth" Northern blots. Applying this protocol to mature mouse spermatozoa, our data dramatically alter our understanding of the small RNA cargo of mature mammalian sperm, revealing a far more complex population of tRNA fragments - including both 5′ and 3′ tRNA halves derived from the majority of tRNAs – than previously appreciated. Taken together, our data confirm the superior performance of OTTR to commercial protocols in analysis of tRNA fragments, and force a reappraisal of potential epigenetic functions of the sperm small RNA payload.