1. Biochemistry and Chemical Biology
  2. Cell Biology
Download icon

Structural and kinetic analysis of the COP9-Signalosome activation and the cullin-RING ubiquitin ligase deneddylation cycle

  1. Ruzbeh Mosadeghi
  2. Kurt M Reichermeier
  3. Martin Winkler
  4. Anne Schreiber
  5. Justin M Reitsma
  6. Yaru Zhang
  7. Florian Stengel
  8. Junyue Cao
  9. Minsoo Kim
  10. Michael J Sweredoski
  11. Sonja Hess
  12. Alexander Leitner
  13. Ruedi Aebersold
  14. Matthias Peter
  15. Raymond J Deshaies
  16. Radoslav I Enchev  Is a corresponding author
  1. University of Southern California, United States
  2. California Instittute of Technology, United States
  3. Swiss Federal Institute of Technology, Switzerland
  4. University of Konstanz, Germany
  5. California Institute of Technology, United States
Research Article
  • Cited 45
  • Views 3,294
  • Annotations
Cite this article as: eLife 2016;5:e12102 doi: 10.7554/eLife.12102

Abstract

The COP9-Signalosome (CSN) regulates cullin-RING ubiquitin ligase (CRL) activity and assembly by cleaving Nedd8 from cullins. Free CSN is autoinhibited, and it remains unclear how it becomes activated. We combine structural and kinetic analyses to identify mechanisms that contribute to CSN activation and Nedd8 deconjugation. Both CSN and neddylated substrate undergo large conformational changes upon binding, with important roles played by the N-terminal domains of Csn2 and Csn4 and the RING domain of Rbx1 in enabling formation of a high affinity, fully active complex. The RING domain is crucial for deneddylation, and works in part through conformational changes involving insert-2 of Csn6. Nedd8 deconjugation and re-engagement of the active site zinc by the autoinhibitory Csn5 glutamate-104 diminish affinity for Cul1/Rbx1 by ~100-fold, resulting in its rapid ejection from the active site. Together, these mechanisms enable a dynamic deneddylation-disassembly cycle that promotes rapid remodeling of the cellular CRL network.

Article and author information

Author details

  1. Ruzbeh Mosadeghi

    Keck School of Medicine, University of Southern California, Los Angeles, United States
    Competing interests
    No competing interests declared.
  2. Kurt M Reichermeier

    Division of Biology and Biological Engineering, California Instittute of Technology, Pasadena, United States
    Competing interests
    No competing interests declared.
  3. Martin Winkler

    Department of Biology, Institute of Biochemistry, Swiss Federal Institute of Technology, Zurich, Switzerland
    Competing interests
    No competing interests declared.
  4. Anne Schreiber

    Department of Biology, Institute of Biochemistry, Swiss Federal Institute of Technology, Zurich, Switzerland
    Competing interests
    No competing interests declared.
  5. Justin M Reitsma

    Division of Biology and Biological Engineering, California Instittute of Technology, Pasadena, United States
    Competing interests
    No competing interests declared.
  6. Yaru Zhang

    Division of Biology and Biological Engineering, California Instittute of Technology, Pasadena, United States
    Competing interests
    No competing interests declared.
  7. Florian Stengel

    Department of Biology, University of Konstanz, Konstanz, Germany
    Competing interests
    No competing interests declared.
  8. Junyue Cao

    Division of Biology and Biological Engineering, California Instittute of Technology, Pasadena, United States
    Competing interests
    No competing interests declared.
  9. Minsoo Kim

    Division of Biology and Biological Engineering, California Instittute of Technology, Pasadena, United States
    Competing interests
    No competing interests declared.
  10. Michael J Sweredoski

    Proteome Exploration Lab, Beckman Institute, California Institute of Technology, Pasadena, United States
    Competing interests
    No competing interests declared.
  11. Sonja Hess

    Proteome Exploration Lab, Beckman Institute, California Institute of Technology, Pasadena, United States
    Competing interests
    No competing interests declared.
  12. Alexander Leitner

    Department of Biology, University of Konstanz, Konstanz, Germany
    Competing interests
    No competing interests declared.
  13. Ruedi Aebersold

    Department of Biology, Institute of Molecular Systems Biology, Swiss Federal Institute of Technology, Zürich, Switzerland
    Competing interests
    No competing interests declared.
  14. Matthias Peter

    Department of Biology, Institute of Biochemistry, Swiss Federal Institute of Technology, Zurich, Switzerland
    Competing interests
    No competing interests declared.
  15. Raymond J Deshaies

    Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
    Competing interests
    Raymond J Deshaies, Reviewing editor, eLife.
  16. Radoslav I Enchev

    Department of Biology, Institute of Biochemistry, Swiss Federal Institute of Technology, Zurich, Switzerland
    For correspondence
    radoslav.enchev@bc.biol.ethz.ch
    Competing interests
    No competing interests declared.

Reviewing Editor

  1. J Wade Harper, Harvard Medical School, United States

Publication history

  1. Received: October 5, 2015
  2. Accepted: March 30, 2016
  3. Accepted Manuscript published: March 31, 2016 (version 1)
  4. Accepted Manuscript updated: April 2, 2016 (version 2)
  5. Version of Record published: May 23, 2016 (version 3)

Copyright

© 2016, Mosadeghi et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,294
    Page views
  • 994
    Downloads
  • 45
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Biochemistry and Chemical Biology
    2. Genetics and Genomics
    Bo Lu et al.
    Short Report Updated

    Tn5-mediated transposition of double-strand DNA has been widely utilized in various high-throughput sequencing applications. Here, we report that the Tn5 transposase is also capable of direct tagmentation of RNA/DNA hybrids in vitro. As a proof-of-concept application, we utilized this activity to replace the traditional library construction procedure of RNA sequencing, which contains many laborious and time-consuming processes. Results of Transposase-assisted RNA/DNA hybrids Co-tagmEntation (termed ‘TRACE-seq’) are compared to traditional RNA-seq methods in terms of detected gene number, gene body coverage, gene expression measurement, library complexity, and differential expression analysis. At the meantime, TRACE-seq enables a cost-effective one-tube library construction protocol and hence is more rapid (within 6 hr) and convenient. We expect this tagmentation activity on RNA/DNA hybrids to have broad potentials on RNA biology and chromatin research.

    1. Biochemistry and Chemical Biology
    2. Neuroscience
    Nami Kitajima et al.
    Research Article Updated

    Adenosine 5’ triphosphate (ATP) is a ubiquitous extracellular signaling messenger. Here, we describe a method for in-vivo imaging of extracellular ATP with high spatiotemporal resolution. We prepared a comprehensive set of cysteine-substitution mutants of ATP-binding protein, Bacillus FoF1-ATP synthase ε subunit, labeled with small-molecule fluorophores at the introduced cysteine residue. Screening revealed that the Cy3-labeled glutamine-105 mutant (Q105C-Cy3; designated ATPOS) shows a large fluorescence change in the presence of ATP, with submicromolar affinity, pH-independence, and high selectivity for ATP over ATP metabolites and other nucleotides. To enable in-vivo validation, we introduced BoNT/C-Hc for binding to neuronal plasma membrane and Alexa Fluor 488 for ratiometric measurement. The resulting ATPOS complex binds to neurons in cerebral cortex of living mice, and clearly visualized a concentrically propagating wave of extracellular ATP release in response to electrical stimulation. ATPOS should be useful to probe the extracellular ATP dynamics of diverse biological processes in vivo.