1. Biochemistry and Chemical Biology
  2. Cell Biology
Download icon

Structural and kinetic analysis of the COP9-Signalosome activation and the cullin-RING ubiquitin ligase deneddylation cycle

  1. Ruzbeh Mosadeghi
  2. Kurt M Reichermeier
  3. Martin Winkler
  4. Anne Schreiber
  5. Justin M Reitsma
  6. Yaru Zhang
  7. Florian Stengel
  8. Junyue Cao
  9. Minsoo Kim
  10. Michael J Sweredoski
  11. Sonja Hess
  12. Alexander Leitner
  13. Ruedi Aebersold
  14. Matthias Peter
  15. Raymond J Deshaies
  16. Radoslav I Enchev  Is a corresponding author
  1. University of Southern California, United States
  2. California Instittute of Technology, United States
  3. Swiss Federal Institute of Technology, Switzerland
  4. University of Konstanz, Germany
  5. California Institute of Technology, United States
  6. ETH Zurich, Switzerland
Research Article
  • Cited 48
  • Views 3,686
  • Annotations
Cite this article as: eLife 2016;5:e12102 doi: 10.7554/eLife.12102

Abstract

The COP9-Signalosome (CSN) regulates cullin-RING ubiquitin ligase (CRL) activity and assembly by cleaving Nedd8 from cullins. Free CSN is autoinhibited, and it remains unclear how it becomes activated. We combine structural and kinetic analyses to identify mechanisms that contribute to CSN activation and Nedd8 deconjugation. Both CSN and neddylated substrate undergo large conformational changes upon binding, with important roles played by the N-terminal domains of Csn2 and Csn4 and the RING domain of Rbx1 in enabling formation of a high affinity, fully active complex. The RING domain is crucial for deneddylation, and works in part through conformational changes involving insert-2 of Csn6. Nedd8 deconjugation and re-engagement of the active site zinc by the autoinhibitory Csn5 glutamate-104 diminish affinity for Cul1/Rbx1 by ~100-fold, resulting in its rapid ejection from the active site. Together, these mechanisms enable a dynamic deneddylation-disassembly cycle that promotes rapid remodeling of the cellular CRL network.

Article and author information

Author details

  1. Ruzbeh Mosadeghi

    Keck School of Medicine, University of Southern California, Los Angeles, United States
    Competing interests
    No competing interests declared.
  2. Kurt M Reichermeier

    Division of Biology and Biological Engineering, California Instittute of Technology, Pasadena, United States
    Competing interests
    No competing interests declared.
  3. Martin Winkler

    Department of Biology, Institute of Biochemistry, Swiss Federal Institute of Technology, Zurich, Switzerland
    Competing interests
    No competing interests declared.
  4. Anne Schreiber

    Department of Biology, Institute of Biochemistry, Swiss Federal Institute of Technology, Zurich, Switzerland
    Competing interests
    No competing interests declared.
  5. Justin M Reitsma

    Division of Biology and Biological Engineering, California Instittute of Technology, Pasadena, United States
    Competing interests
    No competing interests declared.
  6. Yaru Zhang

    Division of Biology and Biological Engineering, California Instittute of Technology, Pasadena, United States
    Competing interests
    No competing interests declared.
  7. Florian Stengel

    Department of Biology, University of Konstanz, Konstanz, Germany
    Competing interests
    No competing interests declared.
  8. Junyue Cao

    Division of Biology and Biological Engineering, California Instittute of Technology, Pasadena, United States
    Competing interests
    No competing interests declared.
  9. Minsoo Kim

    Division of Biology and Biological Engineering, California Instittute of Technology, Pasadena, United States
    Competing interests
    No competing interests declared.
  10. Michael J Sweredoski

    Proteome Exploration Lab, Beckman Institute, California Institute of Technology, Pasadena, United States
    Competing interests
    No competing interests declared.
  11. Sonja Hess

    Proteome Exploration Lab, Beckman Institute, California Institute of Technology, Pasadena, United States
    Competing interests
    No competing interests declared.
  12. Alexander Leitner

    Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zürich, Switzerland
    Competing interests
    No competing interests declared.
  13. Ruedi Aebersold

    Department of Biology, Institute of Molecular Systems Biology, Swiss Federal Institute of Technology, Zürich, Switzerland
    Competing interests
    No competing interests declared.
  14. Matthias Peter

    Department of Biology, Institute of Biochemistry, Swiss Federal Institute of Technology, Zurich, Switzerland
    Competing interests
    No competing interests declared.
  15. Raymond J Deshaies

    Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
    Competing interests
    Raymond J Deshaies, Reviewing editor, eLife.
  16. Radoslav I Enchev

    Department of Biology, Institute of Biochemistry, Swiss Federal Institute of Technology, Zurich, Switzerland
    For correspondence
    radoslav.enchev@bc.biol.ethz.ch
    Competing interests
    No competing interests declared.

Reviewing Editor

  1. J Wade Harper, Harvard Medical School, United States

Publication history

  1. Received: October 5, 2015
  2. Accepted: March 30, 2016
  3. Accepted Manuscript published: March 31, 2016 (version 1)
  4. Accepted Manuscript updated: April 2, 2016 (version 2)
  5. Version of Record published: May 23, 2016 (version 3)

Copyright

© 2016, Mosadeghi et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,686
    Page views
  • 1,036
    Downloads
  • 48
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Biochemistry and Chemical Biology
    2. Neuroscience
    Lloyd Davis et al.
    Tools and Resources Updated

    Synthetic strategies for optically controlling gene expression may enable the precise spatiotemporal control of genes in any combination of cells that cannot be targeted with specific promoters. We develop an improved genetic code expansion system in Caenorhabditis elegans and use it to create a photoactivatable Cre recombinase. We laser-activate Cre in single neurons within a bilaterally symmetric pair to selectively switch on expression of a loxP-controlled optogenetic channel in the targeted neuron. We use the system to dissect, in freely moving animals, the individual contributions of the mechanosensory neurons PLML/PLMR to the C. elegans touch response circuit, revealing distinct and synergistic roles for these neurons. We thus demonstrate how genetic code expansion and optical targeting can be combined to break the symmetry of neuron pairs and dissect behavioural outputs of individual neurons that cannot be genetically targeted.

    1. Biochemistry and Chemical Biology
    2. Genetics and Genomics
    Katarina Akhmetova et al.
    Research Article Updated

    Stimulator of interferon genes (STING) plays an important role in innate immunity by controlling type I interferon response against invaded pathogens. In this work, we describe a previously unknown role of STING in lipid metabolism in Drosophila. Flies with STING deletion are sensitive to starvation and oxidative stress, have reduced lipid storage, and downregulated expression of lipid metabolism genes. We found that Drosophila STING interacts with lipid synthesizing enzymes acetyl-CoA carboxylase (ACC) and fatty acid synthase (FASN). ACC and FASN also interact with each other, indicating that all three proteins may be components of a large multi-enzyme complex. The deletion of Drosophila STING leads to disturbed ACC localization and decreased FASN enzyme activity. Together, our results demonstrate a previously undescribed role of STING in lipid metabolism in Drosophila.