Synchronization of endothelial Dll4-Notch dynamics switch blood vessels from branching to expansion

  1. Benedetta Ubezio
  2. Raquel Agudo Blanco
  3. Ilse Geudens
  4. Fabio Stanchi
  5. Thomas Mathivet
  6. Martin L Jones
  7. Anan Ragab
  8. Katie Bentley
  9. Holger Gerhardt  Is a corresponding author
  1. London Research Institute, United Kingdom
  2. Vesalius Research Center, VIB, Belgium
  3. Harvard Medical School, United States

Abstract

Formation of a regularly branched blood vessel network is crucial in development and physiology. Here we show that the expression of the Notch ligand Dll4 fluctuates in individual endothelial cells within sprouting vessels in the mouse retina in vivo and in correlation with dynamic cell movement in mouse embryonic stem cell-derived sprouting assays. We also find that sprout elongation and branching associates with a highly differential phase pattern of Dll4 between endothelial cells. Stimulation with pathologically high levels of Vegf, or overexpression of Dll4, leads to Notch dependent synchronization of Dll4 fluctuations within clusters, both in vitro and in vivo. Our results demonstrate that the Vegf-Dll4/Notch feedback system normally operates to generate heterogeneity between endothelial cells driving branching, whilst synchronization drives vessel expansion. We propose that this sensitive phase transition in the behaviour of the Vegf-Dll4/Notch feedback loop underlies the morphogen function of Vegfa in vascular patterning.

Article and author information

Author details

  1. Benedetta Ubezio

    Vascular Biology Laboratory, London Research Institute, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Raquel Agudo Blanco

    Vascular Biology Laboratory, London Research Institute, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Ilse Geudens

    Vascular Patterning Laboratory, Vesalius Research Center, VIB, Leuven, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  4. Fabio Stanchi

    Vascular Patterning Laboratory, Vesalius Research Center, VIB, Leuven, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  5. Thomas Mathivet

    Vascular Patterning Laboratory, Vesalius Research Center, VIB, Leuven, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  6. Martin L Jones

    Vascular Biology Laboratory, London Research Institute, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Anan Ragab

    Vascular Biology Laboratory, London Research Institute, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  8. Katie Bentley

    Computational Biology Laboratory, Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Holger Gerhardt

    Vascular Biology Laboratory, London Research Institute, London, United Kingdom
    For correspondence
    holger.gerhardt@mdc-berlin.de
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Animal experimentation: Mice were maintained at London Research Institute under standard husbandry conditions. All protocols were approved by the UK Home Office (P80/2391). Glioblastoma studies were performed at the Vesalius Research Center, VIB, KU Leuven where housing and all experimental animal procedures were performed in accordance with Belgian law on animal care and were approved by the Institutional Animal Care and Research Advisory Committee of the K. U. Leuven (P105/2012).

Copyright

© 2016, Ubezio et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,949
    views
  • 1,303
    downloads
  • 104
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Benedetta Ubezio
  2. Raquel Agudo Blanco
  3. Ilse Geudens
  4. Fabio Stanchi
  5. Thomas Mathivet
  6. Martin L Jones
  7. Anan Ragab
  8. Katie Bentley
  9. Holger Gerhardt
(2016)
Synchronization of endothelial Dll4-Notch dynamics switch blood vessels from branching to expansion
eLife 5:e12167.
https://doi.org/10.7554/eLife.12167

Share this article

https://doi.org/10.7554/eLife.12167

Further reading

    1. Computational and Systems Biology
    George N Bendzunas, Dominic P Byrne ... Natarajan Kannan
    Research Article

    In eukaryotes, protein kinase signaling is regulated by a diverse array of post-translational modifications, including phosphorylation of Ser/Thr residues and oxidation of cysteine (Cys) residues. While regulation by activation segment phosphorylation of Ser/Thr residues is well understood, relatively little is known about how oxidation of cysteine residues modulate catalysis. In this study, we investigate redox regulation of the AMPK-related brain-selective kinases (BRSK) 1 and 2, and detail how broad catalytic activity is directly regulated through reversible oxidation and reduction of evolutionarily conserved Cys residues within the catalytic domain. We show that redox-dependent control of BRSKs is a dynamic and multilayered process involving oxidative modifications of several Cys residues, including the formation of intramolecular disulfide bonds involving a pair of Cys residues near the catalytic HRD motif and a highly conserved T-loop Cys with a BRSK-specific Cys within an unusual CPE motif at the end of the activation segment. Consistently, mutation of the CPE-Cys increases catalytic activity in vitro and drives phosphorylation of the BRSK substrate Tau in cells. Molecular modeling and molecular dynamics simulations indicate that oxidation of the CPE-Cys destabilizes a conserved salt bridge network critical for allosteric activation. The occurrence of spatially proximal Cys amino acids in diverse Ser/Thr protein kinase families suggests that disulfide-mediated control of catalytic activity may be a prevalent mechanism for regulation within the broader AMPK family.

    1. Computational and Systems Biology
    2. Genetics and Genomics
    Fangluo Chen, Dylan C Sarver ... G William Wong
    Research Article

    Obesity is a major risk factor for type 2 diabetes, dyslipidemia, cardiovascular disease, and hypertension. Intriguingly, there is a subset of metabolically healthy obese (MHO) individuals who are seemingly able to maintain a healthy metabolic profile free of metabolic syndrome. The molecular underpinnings of MHO, however, are not well understood. Here, we report that CTRP10/C1QL2-deficient mice represent a unique female model of MHO. CTRP10 modulates weight gain in a striking and sexually dimorphic manner. Female, but not male, mice lacking CTRP10 develop obesity with age on a low-fat diet while maintaining an otherwise healthy metabolic profile. When fed an obesogenic diet, female Ctrp10 knockout (KO) mice show rapid weight gain. Despite pronounced obesity, Ctrp10 KO female mice do not develop steatosis, dyslipidemia, glucose intolerance, insulin resistance, oxidative stress, or low-grade inflammation. Obesity is largely uncoupled from metabolic dysregulation in female KO mice. Multi-tissue transcriptomic analyses highlighted gene expression changes and pathways associated with insulin-sensitive obesity. Transcriptional correlation of the differentially expressed gene (DEG) orthologs in humans also shows sex differences in gene connectivity within and across metabolic tissues, underscoring the conserved sex-dependent function of CTRP10. Collectively, our findings suggest that CTRP10 negatively regulates body weight in females, and that loss of CTRP10 results in benign obesity with largely preserved insulin sensitivity and metabolic health. This female MHO mouse model is valuable for understanding sex-biased mechanisms that uncouple obesity from metabolic dysfunction.