Appetite controlled by a cholecystokinin nucleus of the solitary tract to hypothalamus neurocircuit
Abstract
The nucleus of the solitary tract (NTS) is a key gateway for meal-related signals entering the brain from the periphery. However, the chemical mediators crucial to this process have not been fully elucidated. We reveal that a subset of NTS neurons containing cholecystokinin (CCKNTS) is responsive to nutritional state and that their activation reduces appetite and body weight in mice. Cell-specific anterograde tracing revealed that CCKNTS neurons provide a distinctive innervation of the paraventricular nucleus of the hypothalamus (PVH), with fibers and varicosities in close apposition to a subset of melanocortin-4 receptor (MC4RPVH) cells, which are also responsive to CCK. Optogenetic activation of CCKNTS axon terminals within the PVH reveal the satiating function of CCKNTS neurons to be mediated by a CCKNTS→PVH pathway that also encodes positive valence. These data identify the functional significance of CCKNTS neurons and reveal a sufficient and discrete NTS to hypothalamic circuit controlling appetite.
Article and author information
Author details
Ethics
Animal experimentation: All experimental procedures were performed in accordance with the UK Animals (Scientific Procedures) Act 1986 (Project License No. 60/4565).
Copyright
© 2016, D'Agostino et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 8,577
- views
-
- 1,546
- downloads
-
- 145
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Citations by DOI
-
- 145
- citations for umbrella DOI https://doi.org/10.7554/eLife.12225