Appetite controlled by a cholecystokinin nucleus of the solitary tract to hypothalamus neurocircuit

  1. Giuseppe D'Agostino
  2. David Joseph Lyons
  3. Claudia Cristiano
  4. Luke Kennedy Burke
  5. Joseph C Madara
  6. John N Campbell
  7. Ana Paula Garcia
  8. Benjamin Bruce Land
  9. Bradford B Lowell
  10. Ralph Joseph Dileone
  11. Lora K Heisler  Is a corresponding author
  1. University of Aberdeen, United Kingdom
  2. University of Cambridge, United Kingdom
  3. Harvard Medical School, United States
  4. Yale University School of Medicine, United States

Abstract

The nucleus of the solitary tract (NTS) is a key gateway for meal-related signals entering the brain from the periphery. However, the chemical mediators crucial to this process have not been fully elucidated. We reveal that a subset of NTS neurons containing cholecystokinin (CCKNTS) is responsive to nutritional state and that their activation reduces appetite and body weight in mice. Cell-specific anterograde tracing revealed that CCKNTS neurons provide a distinctive innervation of the paraventricular nucleus of the hypothalamus (PVH), with fibers and varicosities in close apposition to a subset of melanocortin-4 receptor (MC4RPVH) cells, which are also responsive to CCK. Optogenetic activation of CCKNTS axon terminals within the PVH reveal the satiating function of CCKNTS neurons to be mediated by a CCKNTS→PVH pathway that also encodes positive valence. These data identify the functional significance of CCKNTS neurons and reveal a sufficient and discrete NTS to hypothalamic circuit controlling appetite.

Article and author information

Author details

  1. Giuseppe D'Agostino

    Rowett Institute of Nutrition and Health, University of Aberdeen, Aberdeen, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. David Joseph Lyons

    Rowett Institute of Nutrition and Health, University of Aberdeen, Aberdeen, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Claudia Cristiano

    Rowett Institute of Nutrition and Health, University of Aberdeen, Aberdeen, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Luke Kennedy Burke

    Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Joseph C Madara

    Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. John N Campbell

    Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Ana Paula Garcia

    Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  8. Benjamin Bruce Land

    Department of Psychiatry, Yale University School of Medicine, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Bradford B Lowell

    Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Ralph Joseph Dileone

    Department of Psychiatry, Yale University School of Medicine, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Lora K Heisler

    Rowett Institute of Nutrition and Health, University of Aberdeen, Aberdeen, United Kingdom
    For correspondence
    lora.heisler@abdn.ac.uk
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Animal experimentation: All experimental procedures were performed in accordance with the UK Animals (Scientific Procedures) Act 1986 (Project License No. 60/4565).

Copyright

© 2016, D'Agostino et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 8,476
    views
  • 1,536
    downloads
  • 144
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Giuseppe D'Agostino
  2. David Joseph Lyons
  3. Claudia Cristiano
  4. Luke Kennedy Burke
  5. Joseph C Madara
  6. John N Campbell
  7. Ana Paula Garcia
  8. Benjamin Bruce Land
  9. Bradford B Lowell
  10. Ralph Joseph Dileone
  11. Lora K Heisler
(2016)
Appetite controlled by a cholecystokinin nucleus of the solitary tract to hypothalamus neurocircuit
eLife 5:e12225.
https://doi.org/10.7554/eLife.12225

Share this article

https://doi.org/10.7554/eLife.12225

Further reading

    1. Neuroscience
    2. Physics of Living Systems
    Moritz Schloetter, Georg U Maret, Christoph J Kleineidam
    Research Article

    Neurons generate and propagate electrical pulses called action potentials which annihilate on arrival at the axon terminal. We measure the extracellular electric field generated by propagating and annihilating action potentials and find that on annihilation, action potentials expel a local discharge. The discharge at the axon terminal generates an inhomogeneous electric field that immediately influences target neurons and thus provokes ephaptic coupling. Our measurements are quantitatively verified by a powerful analytical model which reveals excitation and inhibition in target neurons, depending on position and morphology of the source-target arrangement. Our model is in full agreement with experimental findings on ephaptic coupling at the well-studied Basket cell-Purkinje cell synapse. It is able to predict ephaptic coupling for any other synaptic geometry as illustrated by a few examples.

    1. Neuroscience
    Gergely F Turi, Sasa Teng ... Yueqing Peng
    Research Article

    Synchronous neuronal activity is organized into neuronal oscillations with various frequency and time domains across different brain areas and brain states. For example, hippocampal theta, gamma, and sharp wave oscillations are critical for memory formation and communication between hippocampal subareas and the cortex. In this study, we investigated the neuronal activity of the dentate gyrus (DG) with optical imaging tools during sleep-wake cycles in mice. We found that the activity of major glutamatergic cell populations in the DG is organized into infraslow oscillations (0.01–0.03 Hz) during NREM sleep. Although the DG is considered a sparsely active network during wakefulness, we found that 50% of granule cells and about 25% of mossy cells exhibit increased activity during NREM sleep, compared to that during wakefulness. Further experiments revealed that the infraslow oscillation in the DG was correlated with rhythmic serotonin release during sleep, which oscillates at the same frequency but in an opposite phase. Genetic manipulation of 5-HT receptors revealed that this neuromodulatory regulation is mediated by Htr1a receptors and the knockdown of these receptors leads to memory impairment. Together, our results provide novel mechanistic insights into how the 5-HT system can influence hippocampal activity patterns during sleep.