Mapping the functional versatility and fragility of Ras GTPase signaling circuits through in vitro network reconstitution

  1. Scott Coyle
  2. Wendell A Lim  Is a corresponding author
  1. Howard Hughes Medical Institute, University of California, San Francisco, United States

Abstract

The Ras-superfamily GTPases are central controllers of cell proliferation and morphology. Ras signaling is mediated by a system of interacting molecules: upstream enzymes regulate Ras's ability to recruit multiple competing downstream effectors. We developed a dynamic in vitro reconstitution of H-Ras signaling systems. By including upstream regulators and downstream effectors, we mapped how different network configurations shaped the timing and amplitude of outputs. Distortion by oncogenic Ras alleles was dependent on the balance of positive (GEF) and negative (GAP) regulators in the system. Different effectors interpreted the same input with distinct dynamics, enabling a Ras system to encode multiple temporal responses to a single input. Different Ras-to-GEF positive feedback mechanisms reshaped output dynamics in distinct ways, such as amplification or overshoot-minimization. This work provides a design manual for programming these systems to produce an array of dynamic signaling behaviors and reveals numerous paths to altered signaling behaviors associated with disease.

Article and author information

Author details

  1. Scott Coyle

    Department of Cellular and Molecular Pharmacology, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Wendell A Lim

    Department of Cellular and Molecular Pharmacology, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, United States
    For correspondence
    Wendell.Lim@ucsf.edu
    Competing interests
    The authors declare that no competing interests exist.

Copyright

© 2016, Coyle & Lim

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,642
    views
  • 1,012
    downloads
  • 18
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Citations by DOI

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Scott Coyle
  2. Wendell A Lim
(2016)
Mapping the functional versatility and fragility of Ras GTPase signaling circuits through in vitro network reconstitution
eLife 5:e12435.
https://doi.org/10.7554/eLife.12435

Share this article

https://doi.org/10.7554/eLife.12435