Trifunctional cross-linker for mapping protein-protein interaction networks and comparing protein conformational states

  1. Dan Tan
  2. Qiang Li
  3. Mei-Jun Zhang
  4. Chao Liu
  5. Chengying Ma
  6. Pan Zhang
  7. Yue-He Ding
  8. Sheng-Bo Fan
  9. Li Tao
  10. Bing Yang
  11. Xiangke Li
  12. Shoucai Ma
  13. Junjie Liu
  14. Boya Feng
  15. Xiaohui Liu
  16. Hong-Wei Wang
  17. Si-Min He
  18. Ning Gao
  19. Keqiong Ye
  20. Meng-Qiu Dong  Is a corresponding author
  21. Xiaoguang Lei
  1. Peking Union Medical College, Chinese Academy of Medical Sciences, China
  2. National Institute of Biological Sciences, China
  3. Institute of Computing Technology, Chinese Academy of Sciences, China
  4. Tsinghua University, China
  5. Chinese Academy of Medical Sciences, Peking Union Medical College, China
  6. Tianjin University, China

Abstract

To improve chemical cross-linking of proteins coupled with mass spectrometry (CXMS), we developed a lysine-targeted enrichable cross-linker containing a biotin tag for affinity purification, a chemical cleavage site to separate cross-linked peptides away from biotin after enrichment, and a spacer arm that can be labeled with stable isotopes for quantitation. By locating the flexible proteins on the surface of 70S ribosome, we show that this trifunctional cross-linker is effective at attaining structural information not easily attainable by crystallography and electron microscopy. From a crude Rrp46 immunoprecipitate, it helped identify two direct binding partners of Rrp46 and 15 protein-protein interactions (PPIs) among the co-immunoprecipitated exosome subunits. Applying it to E. coli and C. elegans lysates, we identified 3130 and 893 inter-linked lysine pairs, representing 677 and 121 PPIs. Using a quantitative CXMS workflow we demonstrate that it can reveal changes in the reactivity of lysine residues due to protein-nucleic acid interaction.

Article and author information

Author details

  1. Dan Tan

    Graduate Program, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Qiang Li

    National Institute of Biological Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Mei-Jun Zhang

    National Institute of Biological Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Chao Liu

    Key Lab of Intelligent Information Processing of Chinese Academy of Sciences, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Chengying Ma

    Ministry of Education Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Pan Zhang

    Graduate Program, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Yue-He Ding

    Graduate Program, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Sheng-Bo Fan

    Key Lab of Intelligent Information Processing of Chinese Academy of Sciences, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  9. Li Tao

    Graduate Program, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  10. Bing Yang

    National Institute of Biological Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  11. Xiangke Li

    National Institute of Biological Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  12. Shoucai Ma

    National Institute of Biological Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  13. Junjie Liu

    Ministry of Education Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  14. Boya Feng

    Ministry of Education Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  15. Xiaohui Liu

    College of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
    Competing interests
    The authors declare that no competing interests exist.
  16. Hong-Wei Wang

    Ministry of Education Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  17. Si-Min He

    Key Lab of Intelligent Information Processing of Chinese Academy of Sciences, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  18. Ning Gao

    Ministry of Education Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  19. Keqiong Ye

    National Institute of Biological Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  20. Meng-Qiu Dong

    Graduate Program, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
    For correspondence
    dongmengqiu@nibs.ac.cn
    Competing interests
    The authors declare that no competing interests exist.
  21. Xiaoguang Lei

    National Institute of Biological Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.

Copyright

© 2016, Tan et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 9,383
    views
  • 2,348
    downloads
  • 109
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Dan Tan
  2. Qiang Li
  3. Mei-Jun Zhang
  4. Chao Liu
  5. Chengying Ma
  6. Pan Zhang
  7. Yue-He Ding
  8. Sheng-Bo Fan
  9. Li Tao
  10. Bing Yang
  11. Xiangke Li
  12. Shoucai Ma
  13. Junjie Liu
  14. Boya Feng
  15. Xiaohui Liu
  16. Hong-Wei Wang
  17. Si-Min He
  18. Ning Gao
  19. Keqiong Ye
  20. Meng-Qiu Dong
  21. Xiaoguang Lei
(2016)
Trifunctional cross-linker for mapping protein-protein interaction networks and comparing protein conformational states
eLife 5:e12509.
https://doi.org/10.7554/eLife.12509

Share this article

https://doi.org/10.7554/eLife.12509

Further reading

    1. Chromosomes and Gene Expression
    2. Structural Biology and Molecular Biophysics
    Liza Dahal, Thomas GW Graham ... Xavier Darzacq
    Research Article

    Type II nuclear receptors (T2NRs) require heterodimerization with a common partner, the retinoid X receptor (RXR), to bind cognate DNA recognition sites in chromatin. Based on previous biochemical and overexpression studies, binding of T2NRs to chromatin is proposed to be regulated by competition for a limiting pool of the core RXR subunit. However, this mechanism has not yet been tested for endogenous proteins in live cells. Using single-molecule tracking (SMT) and proximity-assisted photoactivation (PAPA), we monitored interactions between endogenously tagged RXR and retinoic acid receptor (RAR) in live cells. Unexpectedly, we find that higher expression of RAR, but not RXR, increases heterodimerization and chromatin binding in U2OS cells. This surprising finding indicates the limiting factor is not RXR but likely its cadre of obligate dimer binding partners. SMT and PAPA thus provide a direct way to probe which components are functionally limiting within a complex TF interaction network providing new insights into mechanisms of gene regulation in vivo with implications for drug development targeting nuclear receptors.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Angel D'Oliviera, Xuhang Dai ... Jeffrey S Mugridge
    Research Article

    The SARS-CoV-2 main protease (Mpro or Nsp5) is critical for production of viral proteins during infection and, like many viral proteases, also targets host proteins to subvert their cellular functions. Here, we show that the human tRNA methyltransferase TRMT1 is recognized and cleaved by SARS-CoV-2 Mpro. TRMT1 installs the N2,N2-dimethylguanosine (m2,2G) modification on mammalian tRNAs, which promotes cellular protein synthesis and redox homeostasis. We find that Mpro can cleave endogenous TRMT1 in human cell lysate, resulting in removal of the TRMT1 zinc finger domain. Evolutionary analysis shows the TRMT1 cleavage site is highly conserved in mammals, except in Muroidea, where TRMT1 is likely resistant to cleavage. TRMT1 proteolysis results in reduced tRNA binding and elimination of tRNA methyltransferase activity. We also determined the structure of an Mpro-TRMT1 peptide complex that shows how TRMT1 engages the Mpro active site in an uncommon substrate binding conformation. Finally, enzymology and molecular dynamics simulations indicate that kinetic discrimination occurs during a later step of Mpro-mediated proteolysis following substrate binding. Together, these data provide new insights into substrate recognition by SARS-CoV-2 Mpro that could help guide future antiviral therapeutic development and show how proteolysis of TRMT1 during SARS-CoV-2 infection impairs both TRMT1 tRNA binding and tRNA modification activity to disrupt host translation and potentially impact COVID-19 pathogenesis or phenotypes.