Trifunctional cross-linker for mapping protein-protein interaction networks and comparing protein conformational states

  1. Dan Tan
  2. Qiang Li
  3. Mei-Jun Zhang
  4. Chao Liu
  5. Chengying Ma
  6. Pan Zhang
  7. Yue-He Ding
  8. Sheng-Bo Fan
  9. Li Tao
  10. Bing Yang
  11. Xiangke Li
  12. Shoucai Ma
  13. Junjie Liu
  14. Boya Feng
  15. Xiaohui Liu
  16. Hong-Wei Wang
  17. Si-Min He
  18. Ning Gao
  19. Keqiong Ye
  20. Meng-Qiu Dong  Is a corresponding author
  21. Xiaoguang Lei
  1. Peking Union Medical College, Chinese Academy of Medical Sciences, China
  2. National Institute of Biological Sciences, China
  3. Institute of Computing Technology, Chinese Academy of Sciences, China
  4. Tsinghua University, China
  5. Chinese Academy of Medical Sciences, Peking Union Medical College, China
  6. Tianjin University, China

Abstract

To improve chemical cross-linking of proteins coupled with mass spectrometry (CXMS), we developed a lysine-targeted enrichable cross-linker containing a biotin tag for affinity purification, a chemical cleavage site to separate cross-linked peptides away from biotin after enrichment, and a spacer arm that can be labeled with stable isotopes for quantitation. By locating the flexible proteins on the surface of 70S ribosome, we show that this trifunctional cross-linker is effective at attaining structural information not easily attainable by crystallography and electron microscopy. From a crude Rrp46 immunoprecipitate, it helped identify two direct binding partners of Rrp46 and 15 protein-protein interactions (PPIs) among the co-immunoprecipitated exosome subunits. Applying it to E. coli and C. elegans lysates, we identified 3130 and 893 inter-linked lysine pairs, representing 677 and 121 PPIs. Using a quantitative CXMS workflow we demonstrate that it can reveal changes in the reactivity of lysine residues due to protein-nucleic acid interaction.

Article and author information

Author details

  1. Dan Tan

    Graduate Program, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Qiang Li

    National Institute of Biological Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Mei-Jun Zhang

    National Institute of Biological Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Chao Liu

    Key Lab of Intelligent Information Processing of Chinese Academy of Sciences, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Chengying Ma

    Ministry of Education Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Pan Zhang

    Graduate Program, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Yue-He Ding

    Graduate Program, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Sheng-Bo Fan

    Key Lab of Intelligent Information Processing of Chinese Academy of Sciences, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  9. Li Tao

    Graduate Program, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  10. Bing Yang

    National Institute of Biological Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  11. Xiangke Li

    National Institute of Biological Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  12. Shoucai Ma

    National Institute of Biological Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  13. Junjie Liu

    Ministry of Education Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  14. Boya Feng

    Ministry of Education Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  15. Xiaohui Liu

    College of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
    Competing interests
    The authors declare that no competing interests exist.
  16. Hong-Wei Wang

    Ministry of Education Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  17. Si-Min He

    Key Lab of Intelligent Information Processing of Chinese Academy of Sciences, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  18. Ning Gao

    Ministry of Education Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  19. Keqiong Ye

    National Institute of Biological Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  20. Meng-Qiu Dong

    Graduate Program, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
    For correspondence
    dongmengqiu@nibs.ac.cn
    Competing interests
    The authors declare that no competing interests exist.
  21. Xiaoguang Lei

    National Institute of Biological Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.

Copyright

© 2016, Tan et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 9,451
    views
  • 2,363
    downloads
  • 110
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Dan Tan
  2. Qiang Li
  3. Mei-Jun Zhang
  4. Chao Liu
  5. Chengying Ma
  6. Pan Zhang
  7. Yue-He Ding
  8. Sheng-Bo Fan
  9. Li Tao
  10. Bing Yang
  11. Xiangke Li
  12. Shoucai Ma
  13. Junjie Liu
  14. Boya Feng
  15. Xiaohui Liu
  16. Hong-Wei Wang
  17. Si-Min He
  18. Ning Gao
  19. Keqiong Ye
  20. Meng-Qiu Dong
  21. Xiaoguang Lei
(2016)
Trifunctional cross-linker for mapping protein-protein interaction networks and comparing protein conformational states
eLife 5:e12509.
https://doi.org/10.7554/eLife.12509

Share this article

https://doi.org/10.7554/eLife.12509

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Joar Esteban Pinto Torres, Mathieu Claes ... Yann G-J Sterckx
    Research Article

    African trypanosomes are the causative agents of neglected tropical diseases affecting both humans and livestock. Disease control is highly challenging due to an increasing number of drug treatment failures. African trypanosomes are extracellular, blood-borne parasites that mainly rely on glycolysis for their energy metabolism within the mammalian host. Trypanosomal glycolytic enzymes are therefore of interest for the development of trypanocidal drugs. Here, we report the serendipitous discovery of a camelid single-domain antibody (sdAb aka Nanobody) that selectively inhibits the enzymatic activity of trypanosomatid (but not host) pyruvate kinases through an allosteric mechanism. By combining enzyme kinetics, biophysics, structural biology, and transgenic parasite survival assays, we provide a proof-of-principle that the sdAb-mediated enzyme inhibition negatively impacts parasite fitness and growth.

    1. Structural Biology and Molecular Biophysics
    Manming Xu, Sarath Chandra Dantu ... Shozeb Haider
    Research Article

    The relationship between protein dynamics and function is essential for understanding biological processes and developing effective therapeutics. Functional sites within proteins are critical for activities such as substrate binding, catalysis, and structural changes. Existing computational methods for the predictions of functional residues are trained on sequence, structural, and experimental data, but they do not explicitly model the influence of evolution on protein dynamics. This overlooked contribution is essential as it is known that evolution can fine-tune protein dynamics through compensatory mutations either to improve the proteins’ performance or diversify its function while maintaining the same structural scaffold. To model this critical contribution, we introduce DyNoPy, a computational method that combines residue coevolution analysis with molecular dynamics simulations, revealing hidden correlations between functional sites. DyNoPy constructs a graph model of residue–residue interactions, identifies communities of key residue groups, and annotates critical sites based on their roles. By leveraging the concept of coevolved dynamical couplings—residue pairs with critical dynamical interactions that have been preserved during evolution—DyNoPy offers a powerful method for predicting and analysing protein evolution and dynamics. We demonstrate the effectiveness of DyNoPy on SHV-1 and PDC-3, chromosomally encoded β-lactamases linked to antibiotic resistance, highlighting its potential to inform drug design and address pressing healthcare challenges.