Trifunctional cross-linker for mapping protein-protein interaction networks and comparing protein conformational states

  1. Dan Tan
  2. Qiang Li
  3. Mei-Jun Zhang
  4. Chao Liu
  5. Chengying Ma
  6. Pan Zhang
  7. Yue-He Ding
  8. Sheng-Bo Fan
  9. Li Tao
  10. Bing Yang
  11. Xiangke Li
  12. Shoucai Ma
  13. Junjie Liu
  14. Boya Feng
  15. Xiaohui Liu
  16. Hong-Wei Wang
  17. Si-Min He
  18. Ning Gao
  19. Keqiong Ye
  20. Meng-Qiu Dong  Is a corresponding author
  21. Xiaoguang Lei
  1. Peking Union Medical College, Chinese Academy of Medical Sciences, China
  2. National Institute of Biological Sciences, China
  3. Institute of Computing Technology, Chinese Academy of Sciences, China
  4. Tsinghua University, China
  5. Chinese Academy of Medical Sciences, Peking Union Medical College, China
  6. Tianjin University, China

Abstract

To improve chemical cross-linking of proteins coupled with mass spectrometry (CXMS), we developed a lysine-targeted enrichable cross-linker containing a biotin tag for affinity purification, a chemical cleavage site to separate cross-linked peptides away from biotin after enrichment, and a spacer arm that can be labeled with stable isotopes for quantitation. By locating the flexible proteins on the surface of 70S ribosome, we show that this trifunctional cross-linker is effective at attaining structural information not easily attainable by crystallography and electron microscopy. From a crude Rrp46 immunoprecipitate, it helped identify two direct binding partners of Rrp46 and 15 protein-protein interactions (PPIs) among the co-immunoprecipitated exosome subunits. Applying it to E. coli and C. elegans lysates, we identified 3130 and 893 inter-linked lysine pairs, representing 677 and 121 PPIs. Using a quantitative CXMS workflow we demonstrate that it can reveal changes in the reactivity of lysine residues due to protein-nucleic acid interaction.

Article and author information

Author details

  1. Dan Tan

    Graduate Program, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Qiang Li

    National Institute of Biological Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Mei-Jun Zhang

    National Institute of Biological Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Chao Liu

    Key Lab of Intelligent Information Processing of Chinese Academy of Sciences, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Chengying Ma

    Ministry of Education Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Pan Zhang

    Graduate Program, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Yue-He Ding

    Graduate Program, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Sheng-Bo Fan

    Key Lab of Intelligent Information Processing of Chinese Academy of Sciences, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  9. Li Tao

    Graduate Program, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  10. Bing Yang

    National Institute of Biological Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  11. Xiangke Li

    National Institute of Biological Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  12. Shoucai Ma

    National Institute of Biological Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  13. Junjie Liu

    Ministry of Education Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  14. Boya Feng

    Ministry of Education Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  15. Xiaohui Liu

    College of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
    Competing interests
    The authors declare that no competing interests exist.
  16. Hong-Wei Wang

    Ministry of Education Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  17. Si-Min He

    Key Lab of Intelligent Information Processing of Chinese Academy of Sciences, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  18. Ning Gao

    Ministry of Education Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  19. Keqiong Ye

    National Institute of Biological Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  20. Meng-Qiu Dong

    Graduate Program, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
    For correspondence
    dongmengqiu@nibs.ac.cn
    Competing interests
    The authors declare that no competing interests exist.
  21. Xiaoguang Lei

    National Institute of Biological Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Brian Chait

Version history

  1. Received: October 23, 2015
  2. Accepted: February 26, 2016
  3. Accepted Manuscript published: March 8, 2016 (version 1)
  4. Version of Record published: March 18, 2016 (version 2)
  5. Version of Record updated: September 20, 2016 (version 3)

Copyright

© 2016, Tan et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 9,210
    views
  • 2,326
    downloads
  • 104
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Dan Tan
  2. Qiang Li
  3. Mei-Jun Zhang
  4. Chao Liu
  5. Chengying Ma
  6. Pan Zhang
  7. Yue-He Ding
  8. Sheng-Bo Fan
  9. Li Tao
  10. Bing Yang
  11. Xiangke Li
  12. Shoucai Ma
  13. Junjie Liu
  14. Boya Feng
  15. Xiaohui Liu
  16. Hong-Wei Wang
  17. Si-Min He
  18. Ning Gao
  19. Keqiong Ye
  20. Meng-Qiu Dong
  21. Xiaoguang Lei
(2016)
Trifunctional cross-linker for mapping protein-protein interaction networks and comparing protein conformational states
eLife 5:e12509.
https://doi.org/10.7554/eLife.12509

Share this article

https://doi.org/10.7554/eLife.12509

Further reading

    1. Structural Biology and Molecular Biophysics
    Simon M Lichtinger, Joanne L Parker ... Philip C Biggin
    Research Article

    Proton-coupled oligopeptide transporters (POTs) are of great pharmaceutical interest owing to their promiscuous substrate binding site that has been linked to improved oral bioavailability of several classes of drugs. Members of the POT family are conserved across all phylogenetic kingdoms and function by coupling peptide uptake to the proton electrochemical gradient. Cryo-EM structures and alphafold models have recently provided new insights into different conformational states of two mammalian POTs, SLC15A1, and SLC15A2. Nevertheless, these studies leave open important questions regarding the mechanism of proton and substrate coupling, while simultaneously providing a unique opportunity to investigate these processes using molecular dynamics (MD) simulations. Here, we employ extensive unbiased and enhanced-sampling MD to map out the full SLC15A2 conformational cycle and its thermodynamic driving forces. By computing conformational free energy landscapes in different protonation states and in the absence or presence of peptide substrate, we identify a likely sequence of intermediate protonation steps that drive inward-directed alternating access. These simulations identify key differences in the extracellular gate between mammalian and bacterial POTs, which we validate experimentally in cell-based transport assays. Our results from constant-PH MD and absolute binding free energy (ABFE) calculations also establish a mechanistic link between proton binding and peptide recognition, revealing key details underpining secondary active transport in POTs. This study provides a vital step forward in understanding proton-coupled peptide and drug transport in mammals and pave the way to integrate knowledge of solute carrier structural biology with enhanced drug design to target tissue and organ bioavailability.

    1. Structural Biology and Molecular Biophysics
    Hitendra Negi, Aravind Ravichandran ... Ranabir Das
    Research Article

    The proteasome controls levels of most cellular proteins, and its activity is regulated under stress, quiescence, and inflammation. However, factors determining the proteasomal degradation rate remain poorly understood. Proteasome substrates are conjugated with small proteins (tags) like ubiquitin and Fat10 to target them to the proteasome. It is unclear if the structural plasticity of proteasome-targeting tags can influence substrate degradation. Fat10 is upregulated during inflammation, and its substrates undergo rapid proteasomal degradation. We report that the degradation rate of Fat10 substrates critically depends on the structural plasticity of Fat10. While the ubiquitin tag is recycled at the proteasome, Fat10 is degraded with the substrate. Our results suggest significantly lower thermodynamic stability and faster mechanical unfolding in Fat10 compared to ubiquitin. Long-range salt bridges are absent in the Fat10 structure, creating a plastic protein with partially unstructured regions suitable for proteasome engagement. Fat10 plasticity destabilizes substrates significantly and creates partially unstructured regions in the substrate to enhance degradation. NMR-relaxation-derived order parameters and temperature dependence of chemical shifts identify the Fat10-induced partially unstructured regions in the substrate, which correlated excellently to Fat10-substrate contacts, suggesting that the tag-substrate collision destabilizes the substrate. These results highlight a strong dependence of proteasomal degradation on the structural plasticity and thermodynamic properties of the proteasome-targeting tags.