Trifunctional cross-linker for mapping protein-protein interaction networks and comparing protein conformational states

  1. Dan Tan
  2. Qiang Li
  3. Mei-Jun Zhang
  4. Chao Liu
  5. Chengying Ma
  6. Pan Zhang
  7. Yue-He Ding
  8. Sheng-Bo Fan
  9. Li Tao
  10. Bing Yang
  11. Xiangke Li
  12. Shoucai Ma
  13. Junjie Liu
  14. Boya Feng
  15. Xiaohui Liu
  16. Hong-Wei Wang
  17. Si-Min He
  18. Ning Gao
  19. Keqiong Ye
  20. Meng-Qiu Dong  Is a corresponding author
  21. Xiaoguang Lei
  1. Peking Union Medical College, Chinese Academy of Medical Sciences, China
  2. National Institute of Biological Sciences, China
  3. Institute of Computing Technology, Chinese Academy of Sciences, China
  4. Tsinghua University, China
  5. Chinese Academy of Medical Sciences, Peking Union Medical College, China
  6. Tianjin University, China

Abstract

To improve chemical cross-linking of proteins coupled with mass spectrometry (CXMS), we developed a lysine-targeted enrichable cross-linker containing a biotin tag for affinity purification, a chemical cleavage site to separate cross-linked peptides away from biotin after enrichment, and a spacer arm that can be labeled with stable isotopes for quantitation. By locating the flexible proteins on the surface of 70S ribosome, we show that this trifunctional cross-linker is effective at attaining structural information not easily attainable by crystallography and electron microscopy. From a crude Rrp46 immunoprecipitate, it helped identify two direct binding partners of Rrp46 and 15 protein-protein interactions (PPIs) among the co-immunoprecipitated exosome subunits. Applying it to E. coli and C. elegans lysates, we identified 3130 and 893 inter-linked lysine pairs, representing 677 and 121 PPIs. Using a quantitative CXMS workflow we demonstrate that it can reveal changes in the reactivity of lysine residues due to protein-nucleic acid interaction.

Article and author information

Author details

  1. Dan Tan

    Graduate Program, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Qiang Li

    National Institute of Biological Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Mei-Jun Zhang

    National Institute of Biological Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Chao Liu

    Key Lab of Intelligent Information Processing of Chinese Academy of Sciences, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Chengying Ma

    Ministry of Education Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Pan Zhang

    Graduate Program, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Yue-He Ding

    Graduate Program, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Sheng-Bo Fan

    Key Lab of Intelligent Information Processing of Chinese Academy of Sciences, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  9. Li Tao

    Graduate Program, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  10. Bing Yang

    National Institute of Biological Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  11. Xiangke Li

    National Institute of Biological Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  12. Shoucai Ma

    National Institute of Biological Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  13. Junjie Liu

    Ministry of Education Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  14. Boya Feng

    Ministry of Education Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  15. Xiaohui Liu

    College of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
    Competing interests
    The authors declare that no competing interests exist.
  16. Hong-Wei Wang

    Ministry of Education Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  17. Si-Min He

    Key Lab of Intelligent Information Processing of Chinese Academy of Sciences, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  18. Ning Gao

    Ministry of Education Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  19. Keqiong Ye

    National Institute of Biological Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  20. Meng-Qiu Dong

    Graduate Program, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
    For correspondence
    dongmengqiu@nibs.ac.cn
    Competing interests
    The authors declare that no competing interests exist.
  21. Xiaoguang Lei

    National Institute of Biological Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Brian Chait

Version history

  1. Received: October 23, 2015
  2. Accepted: February 26, 2016
  3. Accepted Manuscript published: March 8, 2016 (version 1)
  4. Version of Record published: March 18, 2016 (version 2)
  5. Version of Record updated: September 20, 2016 (version 3)

Copyright

© 2016, Tan et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 9,063
    views
  • 2,288
    downloads
  • 101
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Dan Tan
  2. Qiang Li
  3. Mei-Jun Zhang
  4. Chao Liu
  5. Chengying Ma
  6. Pan Zhang
  7. Yue-He Ding
  8. Sheng-Bo Fan
  9. Li Tao
  10. Bing Yang
  11. Xiangke Li
  12. Shoucai Ma
  13. Junjie Liu
  14. Boya Feng
  15. Xiaohui Liu
  16. Hong-Wei Wang
  17. Si-Min He
  18. Ning Gao
  19. Keqiong Ye
  20. Meng-Qiu Dong
  21. Xiaoguang Lei
(2016)
Trifunctional cross-linker for mapping protein-protein interaction networks and comparing protein conformational states
eLife 5:e12509.
https://doi.org/10.7554/eLife.12509

Share this article

https://doi.org/10.7554/eLife.12509

Further reading

    1. Developmental Biology
    2. Structural Biology and Molecular Biophysics
    Arne Elofsson, Ling Han ... Luca Jovine
    Research Article

    A crucial event in sexual reproduction is when haploid sperm and egg fuse to form a new diploid organism at fertilization. In mammals, direct interaction between egg JUNO and sperm IZUMO1 mediates gamete membrane adhesion, yet their role in fusion remains enigmatic. We used AlphaFold to predict the structure of other extracellular proteins essential for fertilization to determine if they could form a complex that may mediate fusion. We first identified TMEM81, whose gene is expressed by mouse and human spermatids, as a protein having structural homologies with both IZUMO1 and another sperm molecule essential for gamete fusion, SPACA6. Using a set of proteins known to be important for fertilization and TMEM81, we then systematically searched for predicted binary interactions using an unguided approach and identified a pentameric complex involving sperm IZUMO1, SPACA6, TMEM81 and egg JUNO, CD9. This complex is structurally consistent with both the expected topology on opposing gamete membranes and the location of predicted N-glycans not modeled by AlphaFold-Multimer, suggesting that its components could organize into a synapse-like assembly at the point of fusion. Finally, the structural modeling approach described here could be more generally useful to gain insights into transient protein complexes difficult to detect experimentally.

    1. Structural Biology and Molecular Biophysics
    Thuy TM Ngo, Bailey Liu ... Taekjip Ha
    Research Article

    The organization of nucleosomes into chromatin and their accessibility are shaped by local DNA mechanics. Conversely, nucleosome positions shape genetic variations, which may originate from mismatches during replication and chemical modification of DNA. To investigate how DNA mismatches affect the mechanical stability and the exposure of nucleosomal DNA, we used an optical trap combined with single-molecule FRET and a single-molecule FRET cyclization assay. We found that a single base-pair C-C mismatch enhances DNA bendability and nucleosome mechanical stability for the 601-nucleosome positioning sequence. An increase in force required for DNA unwrapping from the histone core is observed for single base-pair C-C mismatches placed at three tested positions: at the inner turn, at the outer turn, or at the junction of the inner and outer turn of the nucleosome. The results support a model where nucleosomal DNA accessibility is reduced by mismatches, potentially explaining the preferred accumulation of single-nucleotide substitutions in the nucleosome core and serving as the source of genetic variation during evolution and cancer progression. Mechanical stability of an intact nucleosome, that is mismatch-free, is also dependent on the species as we find that yeast nucleosomes are mechanically less stable and more symmetrical in the outer turn unwrapping compared to Xenopus nucleosomes.