Abstract
For intracellular pathogens, residence in a vacuole provides a shelter against cytosolic host defense to the cost of limited access to nutrients. The human pathogen Chlamydia trachomatis grows in a glycogen-rich vacuole. How this large polymer accumulates there is unknown. We reveal that host glycogen stores shift to the vacuole through two pathways: bulk uptake from the cytoplasmic pool, and de novo synthesis. We provide evidence that bacterial glycogen metabolism enzymes are secreted into the vacuole lumen through type 3 secretion. Our data bring strong support to the following scenario: bacteria co-opt the host transporter SLC35D2 to import UDP-glucose into the vacuole, where it serves as substrate for de novo glycogen synthesis, through a remarkable adaptation of the bacterial glycogen synthase. Based on these findings we propose that parasitophorous vacuoles not only offer protection but also provide a microorganism-controlled metabolically active compartment essential for redirecting host resources to the pathogens.
Article and author information
Author details
Reviewing Editor
- Dominique Soldati-Favre, University of Geneva, Switzerland
Publication history
- Received: October 28, 2015
- Accepted: March 15, 2016
- Accepted Manuscript published: March 16, 2016 (version 1)
- Version of Record published: April 8, 2016 (version 2)
Copyright
© 2016, Gehre et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 2,963
- Page views
-
- 740
- Downloads
-
- 39
- Citations
Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.