Sequestration of host metabolism by an intracellular pathogen

  1. Lena Gehre
  2. Olivier Gorgette
  3. Stéphanie Perrinet
  4. Marie-Christine Prevost
  5. Mathieu Ducatez
  6. Amanda M Giebel
  7. David E Nelson
  8. Steven G Ball
  9. Agathe Subtil  Is a corresponding author
  1. Institut Pasteur, France
  2. Université de Lille, France
  3. Indiana University Bloomington, United States
  4. Indiana University School of Medicine, United States

Abstract

For intracellular pathogens, residence in a vacuole provides a shelter against cytosolic host defense to the cost of limited access to nutrients. The human pathogen Chlamydia trachomatis grows in a glycogen-rich vacuole. How this large polymer accumulates there is unknown. We reveal that host glycogen stores shift to the vacuole through two pathways: bulk uptake from the cytoplasmic pool, and de novo synthesis. We provide evidence that bacterial glycogen metabolism enzymes are secreted into the vacuole lumen through type 3 secretion. Our data bring strong support to the following scenario: bacteria co-opt the host transporter SLC35D2 to import UDP-glucose into the vacuole, where it serves as substrate for de novo glycogen synthesis, through a remarkable adaptation of the bacterial glycogen synthase. Based on these findings we propose that parasitophorous vacuoles not only offer protection but also provide a microorganism-controlled metabolically active compartment essential for redirecting host resources to the pathogens.

Article and author information

Author details

  1. Lena Gehre

    Unité de Biologie cellulaire de l'infection microbienne, Institut Pasteur, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  2. Olivier Gorgette

    Plate-forme de Microscopie Ultrastructurale, Institut Pasteur, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Stéphanie Perrinet

    Unité de Biologie cellulaire de l'infection microbienne, Institut Pasteur, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Marie-Christine Prevost

    Plate-forme de Microscopie Ultrastructurale, Institut Pasteur, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Mathieu Ducatez

    Unité de Glycobiologie Structurale et Fonctionnelle, Université de Lille, Lille, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Amanda M Giebel

    Department of Biology, Indiana University Bloomington, Bloomington, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. David E Nelson

    Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Steven G Ball

    Unité de Glycobiologie Structurale et Fonctionnelle, Université de Lille, Lille, France
    Competing interests
    The authors declare that no competing interests exist.
  9. Agathe Subtil

    Unité de Biologie cellulaire de l'infection microbienne, Institut Pasteur, Paris, France
    For correspondence
    asubtil@pasteur.fr
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Dominique Soldati-Favre, University of Geneva, Switzerland

Version history

  1. Received: October 28, 2015
  2. Accepted: March 15, 2016
  3. Accepted Manuscript published: March 16, 2016 (version 1)
  4. Version of Record published: April 8, 2016 (version 2)

Copyright

© 2016, Gehre et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,384
    Page views
  • 778
    Downloads
  • 57
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Lena Gehre
  2. Olivier Gorgette
  3. Stéphanie Perrinet
  4. Marie-Christine Prevost
  5. Mathieu Ducatez
  6. Amanda M Giebel
  7. David E Nelson
  8. Steven G Ball
  9. Agathe Subtil
(2016)
Sequestration of host metabolism by an intracellular pathogen
eLife 5:e12552.
https://doi.org/10.7554/eLife.12552

Further reading

    1. Cell Biology
    Herschel S Dhekne, Francesca Tonelli ... Suzanne R Pfeffer
    Research Advance Updated

    Activating mutations in the leucine-rich repeat kinase 2 (LRRK2) cause Parkinson’s disease. LRRK2 phosphorylates a subset of Rab GTPases, particularly Rab10 and Rab8A, and we showed previously that these phosphoRabs play an important role in LRRK2 membrane recruitment and activation (Vides et al., 2022). To learn more about LRRK2 pathway regulation, we carried out an unbiased, CRISPR-based genome-wide screen to identify modifiers of cellular phosphoRab10 levels. A flow cytometry assay was developed to detect changes in phosphoRab10 levels in pools of mouse NIH-3T3 cells harboring unique CRISPR guide sequences. Multiple negative and positive regulators were identified; surprisingly, knockout of the Rab12 gene was especially effective in decreasing phosphoRab10 levels in multiple cell types and knockout mouse tissues. Rab-driven increases in phosphoRab10 were specific for Rab12, LRRK2-dependent and PPM1H phosphatase-reversible, and did not require Rab12 phosphorylation; they were seen with wild type and pathogenic G2019S and R1441C LRRK2. As expected for a protein that regulates LRRK2 activity, Rab12 also influenced primary cilia formation. AlphaFold modeling revealed a novel Rab12 binding site in the LRRK2 Armadillo domain, and we show that residues predicted to be essential for Rab12 interaction at this site influence phosphoRab10 and phosphoRab12 levels in a manner distinct from Rab29 activation of LRRK2. Our data show that Rab12 binding to a new site in the LRRK2 Armadillo domain activates LRRK2 kinase for Rab phosphorylation and could serve as a new therapeutic target for a novel class of LRRK2 inhibitors that do not target the kinase domain.

    1. Cell Biology
    Ling-Yun Zhou, Chen-Xi Jin ... Hao Wu
    Research Article Updated

    The MRTF–SRF pathway has been extensively studied for its crucial role in driving the expression of a large number of genes involved in actin cytoskeleton of various cell types. However, the specific contribution of MRTF–SRF in hair cells remains unknown. In this study, we showed that hair cell-specific deletion of Srf or Mrtfb, but not Mrtfa, leads to similar defects in the development of stereocilia dimensions and the maintenance of cuticular plate integrity. We used fluorescence-activated cell sorting-based hair cell RNA-Seq analysis to investigate the mechanistic underpinnings of the changes observed in Srf and Mrtfb mutants, respectively. Interestingly, the transcriptome analysis revealed distinct profiles of genes regulated by Srf and Mrtfb, suggesting different transcriptional regulation mechanisms of actin cytoskeleton activities mediated by Srf and Mrtfb. Exogenous delivery of calponin 2 using Adeno-associated virus transduction in Srf mutants partially rescued the impairments of stereocilia dimensions and the F-actin intensity of cuticular plate, suggesting the involvement of Cnn2, as an Srf downstream target, in regulating the hair bundle morphology and cuticular plate actin cytoskeleton organization. Our study uncovers, for the first time, the unexpected differential transcriptional regulation of actin cytoskeleton mediated by Srf and Mrtfb in hair cells, and also demonstrates the critical role of SRF–CNN2 in modulating actin dynamics of the stereocilia and cuticular plate, providing new insights into the molecular mechanism underlying hair cell development and maintenance.