Sequestration of host metabolism by an intracellular pathogen

  1. Lena Gehre
  2. Olivier Gorgette
  3. Stéphanie Perrinet
  4. Marie-Christine Prevost
  5. Mathieu Ducatez
  6. Amanda M Giebel
  7. David E Nelson
  8. Steven G Ball
  9. Agathe Subtil  Is a corresponding author
  1. Institut Pasteur, France
  2. Université de Lille, France
  3. Indiana University Bloomington, United States
  4. Indiana University School of Medicine, United States

Abstract

For intracellular pathogens, residence in a vacuole provides a shelter against cytosolic host defense to the cost of limited access to nutrients. The human pathogen Chlamydia trachomatis grows in a glycogen-rich vacuole. How this large polymer accumulates there is unknown. We reveal that host glycogen stores shift to the vacuole through two pathways: bulk uptake from the cytoplasmic pool, and de novo synthesis. We provide evidence that bacterial glycogen metabolism enzymes are secreted into the vacuole lumen through type 3 secretion. Our data bring strong support to the following scenario: bacteria co-opt the host transporter SLC35D2 to import UDP-glucose into the vacuole, where it serves as substrate for de novo glycogen synthesis, through a remarkable adaptation of the bacterial glycogen synthase. Based on these findings we propose that parasitophorous vacuoles not only offer protection but also provide a microorganism-controlled metabolically active compartment essential for redirecting host resources to the pathogens.

Article and author information

Author details

  1. Lena Gehre

    Unité de Biologie cellulaire de l'infection microbienne, Institut Pasteur, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  2. Olivier Gorgette

    Plate-forme de Microscopie Ultrastructurale, Institut Pasteur, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Stéphanie Perrinet

    Unité de Biologie cellulaire de l'infection microbienne, Institut Pasteur, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Marie-Christine Prevost

    Plate-forme de Microscopie Ultrastructurale, Institut Pasteur, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Mathieu Ducatez

    Unité de Glycobiologie Structurale et Fonctionnelle, Université de Lille, Lille, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Amanda M Giebel

    Department of Biology, Indiana University Bloomington, Bloomington, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. David E Nelson

    Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Steven G Ball

    Unité de Glycobiologie Structurale et Fonctionnelle, Université de Lille, Lille, France
    Competing interests
    The authors declare that no competing interests exist.
  9. Agathe Subtil

    Unité de Biologie cellulaire de l'infection microbienne, Institut Pasteur, Paris, France
    For correspondence
    asubtil@pasteur.fr
    Competing interests
    The authors declare that no competing interests exist.

Copyright

© 2016, Gehre et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,550
    views
  • 801
    downloads
  • 73
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Lena Gehre
  2. Olivier Gorgette
  3. Stéphanie Perrinet
  4. Marie-Christine Prevost
  5. Mathieu Ducatez
  6. Amanda M Giebel
  7. David E Nelson
  8. Steven G Ball
  9. Agathe Subtil
(2016)
Sequestration of host metabolism by an intracellular pathogen
eLife 5:e12552.
https://doi.org/10.7554/eLife.12552

Share this article

https://doi.org/10.7554/eLife.12552

Further reading

    1. Cell Biology
    2. Stem Cells and Regenerative Medicine
    Liyi Wang, Shiqi Liu ... Tizhong Shan
    Research Article

    Conjugated linoleic acids (CLAs) can serve as a nutritional intervention to regulate quality, function, and fat infiltration in skeletal muscles, but the specific cytological mechanisms remain unknown. Here, we applied single-nucleus RNA-sequencing (snRNA-seq) to characterize the cytological mechanism of CLAs regulates fat infiltration in skeletal muscles based on pig models. We investigated the regulatory effects of CLAs on cell populations and molecular characteristics in pig muscles and found CLAs could promote the transformation of fast glycolytic myofibers into slow oxidative myofibers. We also observed three subpopulations including SCD+/DGAT2+, FABP5+/SIAH1+, and PDE4D+/PDE7B+ subclusters in adipocytes and CLAs could increase the percentage of SCD+/DGAT2+ adipocytes. RNA velocity analysis showed FABP5+/SIAH1+ and PDE4D+/PDE7B+ adipocytes could differentiate into SCD+/DGAT2+ adipocytes. We further verified the differentiated trajectory of mature adipocytes and identified PDE4D+/PDE7B+ adipocytes could differentiate into SCD+/DGAT2+ and FABP5+/SIAH1+ adipocytes by using high intramuscular fat (IMF) content Laiwu pig models. The cell-cell communication analysis identified the interaction network between adipocytes and other subclusters such as fibro/adipogenic progenitors (FAPs). Pseudotemporal trajectory analysis and RNA velocity analysis also showed FAPs could differentiate into PDE4D+/PDE7B+ preadipocytes and we discovered the differentiated trajectory of preadipocytes into mature adipocytes. Besides, we found CLAs could promote FAPs differentiate into SCD+/DGAT2+ adipocytes via inhibiting c-Jun N-terminal kinase (JNK) signaling pathway in vitro. This study provides a foundation for regulating fat infiltration in skeletal muscles by using nutritional strategies and provides potential opportunities to serve pig as an animal model to study human fat infiltrated diseases.

    1. Cell Biology
    2. Medicine
    Pengbo Chen, Bo Li ... Xinfeng Zheng
    Research Article

    Background:

    It has been reported that loss of PCBP2 led to increased reactive oxygen species (ROS) production and accelerated cell aging. Knockdown of PCBP2 in HCT116 cells leads to significant downregulation of fibroblast growth factor 2 (FGF2). Here, we tried to elucidate the intrinsic factors and potential mechanisms of bone marrow mesenchymal stromal cells (BMSCs) aging from the interactions among PCBP2, ROS, and FGF2.

    Methods:

    Unlabeled quantitative proteomics were performed to show differentially expressed proteins in the replicative senescent human bone marrow mesenchymal stromal cells (RS-hBMSCs). ROS and FGF2 were detected in the loss-and-gain cell function experiments of PCBP2. The functional recovery experiments were performed to verify whether PCBP2 regulates cell function through ROS/FGF2-dependent ways.

    Results:

    PCBP2 expression was significantly lower in P10-hBMSCs. Knocking down the expression of PCBP2 inhibited the proliferation while accentuated the apoptosis and cell arrest of RS-hBMSCs. PCBP2 silence could increase the production of ROS. On the contrary, overexpression of PCBP2 increased the viability of both P3-hBMSCs and P10-hBMSCs significantly. Meanwhile, overexpression of PCBP2 led to significantly reduced expression of FGF2. Overexpression of FGF2 significantly offset the effect of PCBP2 overexpression in P10-hBMSCs, leading to decreased cell proliferation, increased apoptosis, and reduced G0/G1 phase ratio of the cells.

    Conclusions:

    This study initially elucidates that PCBP2 as an intrinsic aging factor regulates the replicative senescence of hBMSCs through the ROS-FGF2 signaling axis.

    Funding:

    This study was supported by the National Natural Science Foundation of China (82172474).