HSF-1 activates the ubiquitin proteasome system to promote non-ppoptotic developmental cell death in C. elegans

Abstract

Apoptosis is a prominent metazoan cell death form. Yet, mutations in apoptosis regulators cause only minor defects in vertebrate development, suggesting that another developmental cell death mechanism exists. While some non-apoptotic programs are characterized, none appear to control developmental cell-culling. Linker-cell-type death (LCD) is a morphologically conserved non-apoptotic cell death process operating in C. elegans and vertebrate development, and is therefore a compelling candidate-process complementing apoptosis. However, details of LCD execution are not known. Here we delineate a molecular-genetic pathway governing LCD in C. elegans. Redundant activities of antagonistic Wnt signals, a temporal-control pathway, and MAPKK signaling control HSF-1, a conserved stress-activated transcription factor. Rather than protecting cells, HSF-1 promotes their demise by activating components of the ubiquitin-proteasome-system, including the E2-ligase LET-70/UBE2D2 functioning with E3 components CUL-3, RBX-1, TAG-30/BTBD2, and SIAH-1. Our studies uncover design similarities between LCD and developmental apoptosis, and provide testable predictions for analyzing LCD in vertebrates.

Article and author information

Author details

  1. Maxime J Kinet

    Laboratory of Developmental Genetics, The Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Jennifer A Malin

    Laboratory of Developmental Genetics, The Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Mary C Abraham

    Laboratory of Developmental Genetics, The Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Elyse S Blum

    Laboratory of Developmental Genetics, The Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Melanie R Silverman

    Laboratory of Developmental Genetics, The Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Yun Lu

    Laboratory of Developmental Genetics, The Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Shai Shaham

    Laboratory of Developmental Genetics, The Rockefeller University, New York, United States
    For correspondence
    shaham@rockefeller.edu
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Oliver Hobert, Howard Hughes Medical Institute, Columbia University, United States

Version history

  1. Received: November 4, 2015
  2. Accepted: March 7, 2016
  3. Accepted Manuscript published: March 8, 2016 (version 1)
  4. Accepted Manuscript updated: March 9, 2016 (version 2)
  5. Version of Record published: March 30, 2016 (version 3)

Copyright

© 2016, Kinet et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,498
    views
  • 785
    downloads
  • 21
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Maxime J Kinet
  2. Jennifer A Malin
  3. Mary C Abraham
  4. Elyse S Blum
  5. Melanie R Silverman
  6. Yun Lu
  7. Shai Shaham
(2016)
HSF-1 activates the ubiquitin proteasome system to promote non-ppoptotic developmental cell death in C. elegans
eLife 5:e12821.
https://doi.org/10.7554/eLife.12821

Share this article

https://doi.org/10.7554/eLife.12821

Further reading

    1. Cell Biology
    Joanne Tung, Lei Huang ... Adriana Ordonez
    Research Article

    Activating transcription factor 6 (ATF6) is one of three endoplasmic reticulum (ER) transmembrane stress sensors that mediate the unfolded protein response (UPR). Despite its crucial role in long-term ER stress adaptation, regulation of ATF6 alpha (α) signalling remains poorly understood, possibly because its activation involves ER-to-Golgi and nuclear trafficking. Here, we generated an ATF6α/Inositol-requiring kinase 1 (IRE1) dual UPR reporter CHO-K1 cell line and performed an unbiased genome-wide CRISPR/Cas9 mutagenesis screen to systematically profile genetic factors that specifically contribute to ATF6α signalling in the presence and absence of ER stress. The screen identified both anticipated and new candidate genes that regulate ATF6α activation. Among these, calreticulin (CRT), a key ER luminal chaperone, selectively repressed ATF6α signalling: Cells lacking CRT constitutively activated a BiP::sfGFP ATF6α-dependent reporter, had higher BiP levels and an increased rate of trafficking and processing of ATF6α. Purified CRT interacted with the luminal domain of ATF6α in vitro and the two proteins co-immunoprecipitated from cell lysates. CRT depletion exposed a negative feedback loop implicating ATF6α in repressing IRE1 activity basally and overexpression of CRT reversed this repression. Our findings indicate that CRT, beyond its known role as a chaperone, also serves as an ER repressor of ATF6α to selectively regulate one arm of the UPR.

    1. Cancer Biology
    2. Cell Biology
    Alex Weiss, Cassandra D'Amata ... Madeline N Hayes
    Research Article

    High-throughput vertebrate animal model systems for the study of patient-specific biology and new therapeutic approaches for aggressive brain tumors are currently lacking, and new approaches are urgently needed. Therefore, to build a patient-relevant in vivo model of human glioblastoma, we expressed common oncogenic variants including activated human EGFRvIII and PI3KCAH1047R under the control of the radial glial-specific promoter her4.1 in syngeneic tp53 loss-of-function mutant zebrafish. Robust tumor formation was observed prior to 45 days of life, and tumors had a gene expression signature similar to human glioblastoma of the mesenchymal subtype, with a strong inflammatory component. Within early stage tumor lesions, and in an in vivo and endogenous tumor microenvironment, we visualized infiltration of phagocytic cells, as well as internalization of tumor cells by mpeg1.1:EGFP+ microglia/macrophages, suggesting negative regulatory pressure by pro-inflammatory cell types on tumor growth at early stages of glioblastoma initiation. Furthermore, CRISPR/Cas9-mediated gene targeting of master inflammatory transcription factors irf7 or irf8 led to increased tumor formation in the primary context, while suppression of phagocyte activity led to enhanced tumor cell engraftment following transplantation into otherwise immune-competent zebrafish hosts. Altogether, we developed a genetically relevant model of aggressive human glioblastoma and harnessed the unique advantages of zebrafish including live imaging, high-throughput genetic and chemical manipulations to highlight important tumor-suppressive roles for the innate immune system on glioblastoma initiation, with important future opportunities for therapeutic discovery and optimizations.