HSF-1 activates the ubiquitin proteasome system to promote non-apoptotic developmental cell death in C. elegans

Abstract

Apoptosis is a prominent metazoan cell death form. Yet, mutations in apoptosis regulators cause only minor defects in vertebrate development, suggesting that another developmental cell death mechanism exists. While some non-apoptotic programs have been molecularly characterized, none appear to control developmental cell-culling. Linker-cell-type death (LCD) is a morphologically conserved non-apoptotic cell death process operating in C. elegans and vertebrate development, and is therefore a compelling candidate process complementing apoptosis. However, details of LCD execution are not known. Here we delineate a molecular-genetic pathway governing LCD in C. elegans. Redundant activities of antagonistic Wnt signals, a temporal-control pathway, and MAPKK signaling control HSF-1, a conserved stress-activated transcription factor. Rather than protecting cells, HSF-1 promotes their demise by activating components of the ubiquitin proteasome system, including the E2-ligase LET-70/UBE2D2 functioning with E3 components CUL-3, RBX-1, BTBD2, and SIAH-1. Our studies uncover design similarities between LCD and developmental apoptosis, and provide testable predictions for analyzing LCD in vertebrates.

Article and author information

Author details

  1. Maxime J Kinet

    Laboratory of Developmental Genetics, The Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Jennifer A Malin

    Laboratory of Developmental Genetics, The Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Mary C Abraham

    Laboratory of Developmental Genetics, The Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Elyse S Blum

    Laboratory of Developmental Genetics, The Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Melanie R Silverman

    Laboratory of Developmental Genetics, The Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Yun Lu

    Laboratory of Developmental Genetics, The Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Shai Shaham

    Laboratory of Developmental Genetics, The Rockefeller University, New York, United States
    For correspondence
    shaham@rockefeller.edu
    Competing interests
    The authors declare that no competing interests exist.

Copyright

© 2016, Kinet et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Maxime J Kinet
  2. Jennifer A Malin
  3. Mary C Abraham
  4. Elyse S Blum
  5. Melanie R Silverman
  6. Yun Lu
  7. Shai Shaham
(2016)
HSF-1 activates the ubiquitin proteasome system to promote non-apoptotic developmental cell death in C. elegans
eLife 5:e12821.
https://doi.org/10.7554/eLife.12821

Share this article

https://doi.org/10.7554/eLife.12821

Further reading

    1. Cell Biology
    Swastika Sur, Maggie Kerwin ... Minnie M Sarwal
    Research Article

    Understanding the unique susceptibility of the human kidney to pH dysfunction and injury in cystinosis is paramount to developing new therapies to preserve renal function. Renal proximal tubular epithelial cells (RPTECs) and fibroblasts isolated from patients with cystinosis were transcriptionally profiled. Lysosomal fractionation, immunoblotting, confocal microscopy, intracellular pH, TEM, and mitochondrial stress test were performed for validation. CRISPR, CTNS -/- RPTECs were generated. Alterations in cell stress, pH, autophagic turnover, and mitochondrial energetics highlighted key changes in the V-ATPases in patient-derived and CTNS-/- RPTECs. ATP6V0A1 was significantly downregulated in cystinosis and highly co-regulated with loss of CTNS. Correction of ATP6V0A1 rescued cell stress and mitochondrial function. Treatment of CTNS -/- RPTECs with antioxidants ATX induced ATP6V0A1 expression and improved autophagosome turnover and mitochondrial integrity. Our exploratory transcriptional and in vitro cellular and functional studies confirm that loss of Cystinosin in RPTECs, results in a reduction in ATP6V0A1 expression, with changes in intracellular pH, mitochondrial integrity, mitochondrial function, and autophagosome-lysosome clearance. The novel findings are ATP6V0A1’s role in cystinosis-associated renal pathology and among other antioxidants, ATX specifically upregulated ATP6V0A1, improved autophagosome turnover or reduced autophagy and mitochondrial integrity. This is a pilot study highlighting a novel mechanism of tubular injury in cystinosis.

    1. Cell Biology
    2. Developmental Biology
    Dilara N Anbarci, Jennifer McKey ... Blanche Capel
    Research Article

    The rete ovarii (RO) is an appendage of the ovary that has been given little attention. Although the RO appears in drawings of the ovary in early versions of Gray’s Anatomy, it disappeared from recent textbooks, and is often dismissed as a functionless vestige in the adult ovary. Using PAX8 immunostaining and confocal microscopy, we characterized the fetal development of the RO in the context of the mouse ovary. The RO consists of three distinct regions that persist in adult life, the intraovarian rete (IOR), the extraovarian rete (EOR), and the connecting rete (CR). While the cells of the IOR appear to form solid cords within the ovary, the EOR rapidly develops into a convoluted tubular epithelium ending in a distal dilated tip. Cells of the EOR are ciliated and exhibit cellular trafficking capabilities. The CR, connecting the EOR to the IOR, gradually acquires tubular epithelial characteristics by birth. Using microinjections into the distal dilated tip of the EOR, we found that luminal contents flow toward the ovary. Mass spectrometry revealed that the EOR lumen contains secreted proteins potentially important for ovarian function. We show that the cells of the EOR are closely associated with vasculature and macrophages, and are contacted by neuronal projections, consistent with a role as a sensory appendage of the ovary. The direct proximity of the RO to the ovary and its integration with the extraovarian landscape suggest that it plays an important role in ovary development and homeostasis.