Cryo-EM single particle analysis with the Volta phase plate

  1. Radostin Danev  Is a corresponding author
  2. Wolfgang Baumeister
  1. Max Planck Institute of Biochemistry, Germany

Abstract

We present a method for in-focus data acquisition with a phase plate that enables near-atomic resolution single particle reconstructions. Accurate focusing is the determining factor for obtaining high quality data. A double-area focusing strategy was implemented in order to achieve the required precision. With this approach we obtained a 3.2 Å resolution reconstruction of the Thermoplasma acidophilum 20S proteasome. The phase plate matches or slightly exceeds the performance of the conventional defocus approach. Spherical aberration becomes a limiting factor for achieving resolutions below 3 Å with in-focus phase plate images. The phase plate could enable single particle analysis of challenging samples in terms of small size, heterogeneity and flexibility that are difficult to solve by the conventional defocus approach.

Article and author information

Author details

  1. Radostin Danev

    Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
    For correspondence
    danev@biochem.mpg.de
    Competing interests
    Radostin Danev, co-inventor in US patent US9129774 B2 Method of using a phase plate in a transmission electron microscope"".
  2. Wolfgang Baumeister

    Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
    Competing interests
    Wolfgang Baumeister, on the Scientific Advisory Board of FEI Company.

Copyright

© 2016, Danev & Baumeister

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 14,080
    views
  • 2,985
    downloads
  • 144
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Radostin Danev
  2. Wolfgang Baumeister
(2016)
Cryo-EM single particle analysis with the Volta phase plate
eLife 5:e13046.
https://doi.org/10.7554/eLife.13046

Share this article

https://doi.org/10.7554/eLife.13046

Further reading

    1. Structural Biology and Molecular Biophysics
    Robert M Glaeser
    Insight

    A new advance in electron microscopy can reveal highly-detailed structures of protein complexes.

    1. Structural Biology and Molecular Biophysics
    Liliana R Teixeira, Radha Akella ... Elizabeth J Goldsmith
    Research Article

    Osmotic stress and chloride regulate the autophosphorylation and activity of the WNK1 and WNK3 kinase domains. The kinase domain of unphosphorylated WNK1 (uWNK1) is an asymmetric dimer possessing water molecules conserved in multiple uWNK1 crystal structures. Conserved waters are present in two networks, referred to here as conserved water networks 1 and 2 (CWN1 and CWN2). Here, we show that PEG400 applied to crystals of dimeric uWNK1 induces de-dimerization. Both the WNK1 the water networks and the chloride-binding site are disrupted by PEG400. CWN1 is surrounded by a cluster of pan-WNK-conserved charged residues. Here, we mutagenized these charges in WNK3, a highly active WNK isoform kinase domain, and WNK1, the isoform best studied crystallographically. Mutation of E314 in the Activation Loop of WNK3 (WNK3/E314Q and WNK3/E314A, and the homologous WNK1/E388A) enhanced the rate of autophosphorylation, and reduced chloride sensitivity. Other WNK3 mutants reduced the rate of autophosphorylation activity coupled with greater chloride sensitivity than wild-type. The water and chloride regulation thus appear linked. The lower activity of some mutants may reflect effects on catalysis. Crystallography showed that activating mutants introduced conformational changes in similar parts of the structure to those induced by PEG400. WNK activating mutations and crystallography support a role for CWN1 in WNK inhibition consistent with water functioning as an allosteric ligand.