Cryo-EM single particle analysis with the Volta phase plate

  1. Radostin Danev  Is a corresponding author
  2. Wolfgang Baumeister
  1. Max Planck Institute of Biochemistry, Germany

Abstract

We present a method for in-focus data acquisition with a phase plate that enables near-atomic resolution single particle reconstructions. Accurate focusing is the determining factor for obtaining high quality data. A double-area focusing strategy was implemented in order to achieve the required precision. With this approach we obtained a 3.2 Å resolution reconstruction of the Thermoplasma acidophilum 20S proteasome. The phase plate matches or slightly exceeds the performance of the conventional defocus approach. Spherical aberration becomes a limiting factor for achieving resolutions below 3 Å with in-focus phase plate images. The phase plate could enable single particle analysis of challenging samples in terms of small size, heterogeneity and flexibility that are difficult to solve by the conventional defocus approach.

Article and author information

Author details

  1. Radostin Danev

    Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
    For correspondence
    danev@biochem.mpg.de
    Competing interests
    Radostin Danev, co-inventor in US patent US9129774 B2 Method of using a phase plate in a transmission electron microscope"".
  2. Wolfgang Baumeister

    Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
    Competing interests
    Wolfgang Baumeister, on the Scientific Advisory Board of FEI Company.

Reviewing Editor

  1. Sjors HW Scheres, Medical Research Council, United Kingdom

Version history

  1. Received: November 15, 2015
  2. Accepted: March 3, 2016
  3. Accepted Manuscript published: March 7, 2016 (version 1)
  4. Version of Record published: April 28, 2016 (version 2)

Copyright

© 2016, Danev & Baumeister

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 13,843
    views
  • 2,966
    downloads
  • 139
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Radostin Danev
  2. Wolfgang Baumeister
(2016)
Cryo-EM single particle analysis with the Volta phase plate
eLife 5:e13046.
https://doi.org/10.7554/eLife.13046

Share this article

https://doi.org/10.7554/eLife.13046

Further reading

    1. Structural Biology and Molecular Biophysics
    Robert M Glaeser
    Insight

    A new advance in electron microscopy can reveal highly-detailed structures of protein complexes.

    1. Cell Biology
    2. Structural Biology and Molecular Biophysics
    Marcel Proske, Robert Janowski ... Dierk Niessing
    Research Article

    Mutations in the human PURA gene cause the neurodevelopmental PURA syndrome. In contrast to several other monogenetic disorders, almost all reported mutations in this nucleic acid-binding protein result in the full disease penetrance. In this study, we observed that patient mutations across PURA impair its previously reported co-localization with processing bodies. These mutations either destroyed the folding integrity, RNA binding, or dimerization of PURA. We also solved the crystal structures of the N- and C-terminal PUR domains of human PURA and combined them with molecular dynamics simulations and nuclear magnetic resonance measurements. The observed unusually high dynamics and structural promiscuity of PURA indicated that this protein is particularly susceptible to mutations impairing its structural integrity. It offers an explanation why even conservative mutations across PURA result in the full penetrance of symptoms in patients with PURA syndrome.