Molecular mechanism of activation-triggered subunit exchange in Ca2+/calmodulin-dependent protein kinase II

  1. Moitrayee Bhattacharyya
  2. Margaret M Stratton
  3. Catherine C Going
  4. Ethan D McSpadden
  5. Yongjian Huang
  6. Anna C Susa
  7. Anna Elleman
  8. Yumeng Melody Cao
  9. Nishant Pappireddi
  10. Pawel Burkhardt
  11. Christine L Gee
  12. Tiago Barros
  13. Howard Schulman
  14. Evan R Williams
  15. John Kuriyan  Is a corresponding author
  1. University of California, Berkeley, United States
  2. University of Massachusetts at Amherst, United States
  3. Stanford University, United States
  4. Smith College, United States
  5. Marine Biological Association, United States
  6. Allosteros Therapeutics, United States

Abstract

Activation triggers the exchange of subunits in Ca2+/calmodulin-dependent protein kinase II (CaMKII), an oligomeric enzyme that is critical for learning, memory, and cardiac function. The mechanism by which subunit exchange occurs remains elusive. We show that the human CaMKII holoenzyme exists in dodecameric and tetradecameric forms, and that the calmodulin(CaM)-binding element of CaMKII can bind to the hub of the holoenzyme and destabilize it to release dimers. The structures of CaMKII from two distantly diverged organisms suggest that the CaM-binding element of activated CaMKII acts as a wedge by docking at intersubunit interfaces in the hub. This converts the hub into a spiral form that can release or gain CaMKII dimers. Our data reveal a three-way competition for the CaM-binding element, whereby phosphorylation biases it towards the hub interface, away from the kinase domain and calmodulin, thus unlocking the ability of activated CaMKII holoenzymes to exchange dimers with unactivated ones.

Article and author information

Author details

  1. Moitrayee Bhattacharyya

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  2. Margaret M Stratton

    Department of Biochemistry and Molecular Biology, University of Massachusetts at Amherst, Amherst, United States
    Competing interests
    No competing interests declared.
  3. Catherine C Going

    Department of Chemistry, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  4. Ethan D McSpadden

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  5. Yongjian Huang

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  6. Anna C Susa

    Department of Chemistry, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  7. Anna Elleman

    Department of Chemistry, Stanford University, Palo Alto, United States
    Competing interests
    No competing interests declared.
  8. Yumeng Melody Cao

    Department of Physics, Smith College, Northampton, United States
    Competing interests
    No competing interests declared.
  9. Nishant Pappireddi

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  10. Pawel Burkhardt

    The Laboratory, Marine Biological Association, Plymouth, United States
    Competing interests
    No competing interests declared.
  11. Christine L Gee

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  12. Tiago Barros

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  13. Howard Schulman

    Allosteros Therapeutics, Sunnyvale, United States
    Competing interests
    No competing interests declared.
  14. Evan R Williams

    Department of Chemistry, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  15. John Kuriyan

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    For correspondence
    kuriyan@berkeley.edu
    Competing interests
    John Kuriyan, Senior editor, eLife.

Reviewing Editor

  1. Andrea Musacchio, Max Planck Institute of Molecular Physiology, Germany

Version history

  1. Received: November 30, 2015
  2. Accepted: March 3, 2016
  3. Accepted Manuscript published: March 7, 2016 (version 1)
  4. Version of Record published: May 6, 2016 (version 2)

Copyright

© 2016, Bhattacharyya et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,993
    views
  • 1,227
    downloads
  • 75
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Moitrayee Bhattacharyya
  2. Margaret M Stratton
  3. Catherine C Going
  4. Ethan D McSpadden
  5. Yongjian Huang
  6. Anna C Susa
  7. Anna Elleman
  8. Yumeng Melody Cao
  9. Nishant Pappireddi
  10. Pawel Burkhardt
  11. Christine L Gee
  12. Tiago Barros
  13. Howard Schulman
  14. Evan R Williams
  15. John Kuriyan
(2016)
Molecular mechanism of activation-triggered subunit exchange in Ca2+/calmodulin-dependent protein kinase II
eLife 5:e13405.
https://doi.org/10.7554/eLife.13405

Share this article

https://doi.org/10.7554/eLife.13405

Further reading

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Natalia Dolgova, Eva-Maria E Uhlemann ... Oleg Y Dmitriev
    Research Article

    Mediator of ERBB2-driven Cell Motility 1 (MEMO1) is an evolutionary conserved protein implicated in many biological processes; however, its primary molecular function remains unknown. Importantly, MEMO1 is overexpressed in many types of cancer and was shown to modulate breast cancer metastasis through altered cell motility. To better understand the function of MEMO1 in cancer cells, we analyzed genetic interactions of MEMO1 using gene essentiality data from 1028 cancer cell lines and found multiple iron-related genes exhibiting genetic relationships with MEMO1. We experimentally confirmed several interactions between MEMO1 and iron-related proteins in living cells, most notably, transferrin receptor 2 (TFR2), mitoferrin-2 (SLC25A28), and the global iron response regulator IRP1 (ACO1). These interactions indicate that cells with high MEMO1 expression levels are hypersensitive to the disruptions in iron distribution. Our data also indicate that MEMO1 is involved in ferroptosis and is linked to iron supply to mitochondria. We have found that purified MEMO1 binds iron with high affinity under redox conditions mimicking intracellular environment and solved MEMO1 structures in complex with iron and copper. Our work reveals that the iron coordination mode in MEMO1 is very similar to that of iron-containing extradiol dioxygenases, which also display a similar structural fold. We conclude that MEMO1 is an iron-binding protein that modulates iron homeostasis in cancer cells.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Isabelle Petit-Hartlein, Annelise Vermot ... Franck Fieschi
    Research Article

    NADPH oxidases (NOX) are transmembrane proteins, widely spread in eukaryotes and prokaryotes, that produce reactive oxygen species (ROS). Eukaryotes use the ROS products for innate immune defense and signaling in critical (patho)physiological processes. Despite the recent structures of human NOX isoforms, the activation of electron transfer remains incompletely understood. SpNOX, a homolog from Streptococcus pneumoniae, can serves as a robust model for exploring electron transfers in the NOX family thanks to its constitutive activity. Crystal structures of SpNOX full-length and dehydrogenase (DH) domain constructs are revealed here. The isolated DH domain acts as a flavin reductase, and both constructs use either NADPH or NADH as substrate. Our findings suggest that hydride transfer from NAD(P)H to FAD is the rate-limiting step in electron transfer. We identify significance of F397 in nicotinamide access to flavin isoalloxazine and confirm flavin binding contributions from both DH and Transmembrane (TM) domains. Comparison with related enzymes suggests that distal access to heme may influence the final electron acceptor, while the relative position of DH and TM does not necessarily correlate with activity, contrary to previous suggestions. It rather suggests requirement of an internal rearrangement, within the DH domain, to switch from a resting to an active state. Thus, SpNOX appears to be a good model of active NOX2, which allows us to propose an explanation for NOX2’s requirement for activation.