1. Epidemiology and Global Health
Download icon

A century of trends in adult human height

Research Article
Cited
11
Views
148,274
Comments
0
Cite as: eLife 2016;5:e13410 doi: 10.7554/eLife.13410

Abstract

Being taller is associated with enhanced longevity, and higher education and earnings. We reanalysed 1472 population-based studies, with measurement of height on more than 18.6 million participants to estimate mean height for people born between 1896 and 1996 in 200 countries. The largest gain in adult height over the past century has occurred in South Korean women and Iranian men, who became 20.2 cm (95% credible interval 17.5–22.7) and 16.5 cm (13.3–19.7) taller, respectively. In contrast, there was little change in adult height in some sub-Saharan African countries and in South Asia over the century of analysis. The tallest people over these 100 years are men born in the Netherlands in the last quarter of 20th century, whose average heights surpassed 182.5 cm, and the shortest were women born in Guatemala in 1896 (140.3 cm; 135.8–144.8). The height differential between the tallest and shortest populations was 19-20 cm a century ago, and has remained the same for women and increased for men a century later despite substantial changes in the ranking of countries.

https://doi.org/10.7554/eLife.13410.001

eLife digest

People from different countries grow to different heights. This may be partly due to genetics, but most differences in height between countries have other causes. For example, children and adolescents who are malnourished, or who suffer from serious diseases, will generally be shorter as adults. This is important because taller people generally live longer, are less likely to suffer from heart disease and stroke, and taller women and their children are less likely to have complications during and after birth. Taller people may also earn more and be more successful at school. However, they are also more likely to develop some cancers.

The NCD Risk Factor Collaboration set out to find out how tall people are, on average, in every country in the world at the moment, and how this has changed over the past 100 years. The analysis revealed large differences in height between countries. The tallest men were born in the last part of the 20th century in the Netherlands, and were nearly 183 cm tall on average. The shortest women were born in 1896 in Guatemala, and were on average 140 cm tall. The difference between the shortest and tallest countries is about 20 cm for both men and women. This means there are large differences between countries in terms of nutrition and the risk of developing some diseases.

The way in which height has changed over the past 100 years also varies from country to country. Iranian men born in 1996 were around 17 cm taller than those born in 1896, and South Korean women were 20 cm taller. In other parts of the world, particularly in South Asia and parts of Africa, people are only slightly taller than 100 years ago, and in some countries people are shorter than they were 50 years ago.

There is a need to better understand why height has changed in different countries by different amounts, and use this information to improve nutrition and health across the world. It would also be valuable to understand how much becoming taller has been responsible for improved health and longevity throughout the world.

https://doi.org/10.7554/eLife.13410.002

Introduction

Being taller is associated with enhanced longevity, lower risk of adverse pregnancy outcomes and cardiovascular and respiratory diseases, and higher risk of some cancers (Paajanen et al., 2010; Emerging Risk Factors Collaboration, 2012; Green et al., 2011; Nelson et al., 2015; Batty et al., 2010; World Cancer Research Fund / American Institute for Cancer Research, 2007; 2010; 2011; 2012; 2014a; 2014b; Nüesch et al., 2015; Davies et al., 2015; Zhang et al., 2015; Kozuki et al., 2015; Black et al., 2008). There is also evidence that taller people on average have higher education, earnings, and possibly even social position (Adair et al., 2013; Stulp et al., 2015; Barker et al., 2005; Strauss and Thomas, 1998; Chen and Zhou, 2007; Case and Paxson, 2008).

Although height is one of the most heritable human traits (Fisher, 1919; Lettre, 2011), cross-population differences are believed to be related to non-genetic, environmental factors. Of these, foetal growth (itself related to maternal size, nutrition and environmental exposures), and nutrition and infections during childhood and adolescence are particularly important determinants of height during adulthood (Cole, 2000; Silventoinen et al., 2000; Dubois et al., 2012; Haeffner et al., 2002; Sørensen et al., 1999; Victora et al., 2008; Eveleth and Tanner, 1990; Tanner, 1962; Tanner, 1992; Bogin, 2013). Information on height, and its trends, can therefore help understand the health impacts of childhood and adolescent nutrition and environment, and of their social, economic, and political determinants, on both non-communicable diseases (NCDs) and on neonatal health and survival in the next generation (Cole, 2000; Tanner, 1992; Tanner, 1987).

Trends in men’s height have been analysed in Europe, the USA, and Japan for up to 250 years, using data on conscripts, voluntary military personnel, convicts, or slaves (Cole, 2000; Floud et al., 1990; Fogel et al., 1983; Schmidt et al., 1995; Floud et al., 2011; Tanner et al., 1982; Hatton and Bray, 2010; Tanner, 1981; Facchini and Gualdi-Russo, 1982). There are fewer historical data for women, and for other regions where focus has largely been on children and where adult data tend to be reported at one point in time or over short periods (Subramanian et al., 2011; Grasgruber et al., 2014; Baten and Blum, 2012; Deaton, 2007; Mamidi et al., 2011; van Zanden et al., 2014). In this paper, we pooled worldwide population-based data to estimate height in adulthood for men and women born over a whole century throughout the world.

Results

We estimated that people born in 1896 were shortest in Asia and in Central and Andean Latin America (Figure 1 and Figure 2). The 1896 male birth cohort on average measured only 152.9 cm (credible interval 147.9–157.9) in Laos, which is the same as a well-nourished 12.5-year boy according to international growth standards (de Onis et al., 2007), followed by Timor-Leste and Guatemala. Women born in the same year in Guatemala were on average 140.3 cm (135.8–144.8), the same as a well-nourished 10-year girl. El Salvador, Peru, Bangladesh, South Korea and Japan had the next shortest women. The tallest populations a century ago lived in Central and Northern Europe, North America and some Pacific islands. The height of men born in Sweden, Norway and the USA surpassed 171 cm, ~18–19 cm taller than men in Laos. Swedish women, with average adult height of 160.3 cm (158.2–162.4), were the tallest a century ago and 20 cm taller than women in Guatemala. Women were also taller than 158 cm in Norway, Iceland, the USA and American Samoa.

Adult height for the 1896 and 1996 birth cohorts for men.

See www.ncdrisc.org for interactive version.

https://doi.org/10.7554/eLife.13410.003
Adult height for the 1896 and 1996 birth cohorts for women.

See www.ncdrisc.org for interactive version.

https://doi.org/10.7554/eLife.13410.004

Changes in adult height over the century of analysis varied drastically across countries. Notably, although the large increases in European men’s heights in the 19th and 20th century have been highlighted, we found that the largest gains since the 1896 birth cohort occurred in South Korean women and Iranian men, who became 20.2 cm (17.5–22.7) and 16.5 cm (13.3–19.7) taller, respectively (Figure 3, Figure 4 and Figure 5). As a result, South Korean women moved from the fifth shortest to the top tertile of tallest women in the world over the course of a century. Men in South Korea also had large gains relative to other countries, by 15.2 cm (12.3–18.1). There were also large gains in height in Japan, Greenland, some countries in Southern Europe (e.g., Greece) and Central Europe (e.g., Serbia and Poland, and for women Czech Republic). In contrast, there was little gain in height in many countries in sub-Saharan Africa and South Asia.

Change in adult height between the 1896 and 1996 birth cohorts.
https://doi.org/10.7554/eLife.13410.005
Height in adulthood for the 1896 and 1996 birth cohorts for men.

The open circle shows the adult height attained by the 1896 birth cohort and the filled circle that of the 1996 birth cohort; the length of the connecting line represents the change in height over the century of analysis. The numbers next to each circle show the country’s rank in terms of adult height for the corresponding cohort. See www.ncdrisc.org for interactive version.

https://doi.org/10.7554/eLife.13410.006
Height in adulthood for the 1896 and 1996 birth cohorts for women.

The open circle shows the adult height attained by the 1896 birth cohort and the filled circle that of the 1996 birth cohort; the length of the connecting line represents the change in height over the century of analysis. The numbers next to each circle show the country’s rank in terms of adult height for the corresponding cohort. See www.ncdrisc.org for interactive version.

https://doi.org/10.7554/eLife.13410.007

The pace of growth in height has not been uniform over the past century. The impressive rise in height in Japan stopped in people born after the early 1960s (Figure 6). In South Korea, the flattening began in the cohorts born in the 1980s for men and it may have just begun in women. As a result, South Korean men and women are now taller than their Japanese counterparts. The rise is continuing in other East and Southeast Asian countries like China and Thailand, with Chinese men and women having surpassed the Japanese (but not yet as tall as South Koreans). The rise in adult height also seems to have plateaued in South Asian countries like Bangladesh and India at much lower levels than in East Asia, e.g., 5–10 cm shorter than it did in Japan and South Korea.

Trends in height for the adult populations of selected countries in Asia.

The solid line represents the posterior mean and the shaded area the 95% credible interval of the estimates. The points show the actual data from each country, together with its 95% confidence interval due to sampling. The solid line and shaded area show estimated height at 18 years of age, while the data points show height at the actual age of measurement. The divergence between estimates and data for earlier birth cohorts is because participants from these birth cohorts were generally older when their heights were measured.

https://doi.org/10.7554/eLife.13410.008

There were also variations in the time course of height change across high-income western countries, with height increase having plateaued in Northern European countries like Finland and in English-speaking countries like the UK for 2–3 decades (Larnkaer et al., 2006; Schönbeck et al., 2013), followed by Eastern Europe (Figure 7). The earliest of these occurred in the USA, which was one of the tallest nations a century ago but has now fallen behind its European counterparts after having had the smallest gain in height of any high-income country (Tanner, 1981; Komlos and Lauderdale, 2007; Komlos and Baur, 2004; Sokoloff and Villaflor, 1982). In contrast, height is still increasing in some Southern European countries (e.g., Spain), and in many countries in Latin America.

Trends in height for the adult populations of selected countries in Europe.

The solid line represents the posterior mean and the shaded area the 95% credible interval of the estimates. The points show the actual data from each country, together with its 95% confidence interval due to sampling. The solid line and shaded area show estimated height at 18 years of age, while the data points show height at the actual age of measurement. The divergence between estimates and data for earlier birth cohorts is because participants from these birth cohorts were generally older when their heights were measured.

https://doi.org/10.7554/eLife.13410.009

As an exception to the steady gains in most countries, adult height decreased or at best remained the same in many countries in sub-Saharan Africa for cohorts born after the early 1960s, by around 5 cm from its peak in some countries (see for example Niger, Rwanda, Sierra Leone, and Uganda in Figure 8). More recently, the same seems to have happened for men, but not women, in some countries in Central Asia (e.g., Azerbaijan and Uzbekistan) and Middle East and North Africa (e.g., Egypt and Yemen), whereas in others (e.g., Iran) both sexes continue to grow taller.

Trends in height for the adult populations of selected countries in the Middle East, North Africa, and sub-Saharan Africa.

The solid line represents the posterior mean and the shaded area the 95% credible interval of the estimates. The points show the actual data from each country, together with its 95% confidence interval due to sampling. The solid line and shaded area show estimated height at 18 years of age, while the data points show height at the actual age of measurement. The divergence between estimates and data for earlier birth cohorts is because participants from these birth cohorts were generally older when their heights were measured.

https://doi.org/10.7554/eLife.13410.010

Men born in 1996 surpass average heights of 181 cm in the Netherlands, Belgium, Estonia, Latvia and Denmark, with Dutch men, at 182.5 cm (180.6–184.5), the tallest people on the planet. The gap with the shortest countries – Timor-Leste, Yemen and Laos, where men are only ~160 cm tall – is 22–23 cm, an increase of ~4 cm on the global gap in the 1896 birth cohort. Australia was the only non-European country where men born in 1996 were among the 25 tallest in the world. Women born in 1996 are shortest in Guatemala, with an average height of 149.4 cm (148.0–150.8), and are shorter than 151 cm in the Philippines, Bangladesh and Nepal. The tallest women live in Latvia, the Netherlands, Estonia and Czech Republic, with average height surpassing 168 cm, creating a 20 cm global gap in women’s height (Figure 5).

Male and female heights were correlated across countries in 1896 as well as in 1996. Men were taller than women in every country, on average by ~11 cm in the 1896 birth cohort and ~12 cm in the 1996 birth cohort (Figure 9). In the 1896 birth cohort, the male-female height gap in countries where average height was low was slightly larger than in taller nations. In other words, at the turn of the 20th century, men seem to have had a relative advantage over women in undernourished compared to better-nourished populations. A century later, the male-female height gap is about the same throughout the height range. Changes in male and female heights over the century of analysis were also correlated, which is in contrast to low correlation between changes in male and female BMIs as reported elsewhere (NCD Risk Factor Collaboration, 2016).

Height in adulthood for men vs. women for the 1896 and 1996 birth cohorts, and change in men’s vs. women’s heights from 1896 to 1996.
https://doi.org/10.7554/eLife.13410.011

Change in population mean height was not correlated with change in mean BMI (NCD Risk Factor Collaboration, 2016) across countries for men (correlation coefficient = −0.016) and was weakly inversely correlated for women (correlation coefficient = −0.28) (Figure 10). Countries like Japan, Singapore and France had larger-than-median gains in height but little change in BMI, in contrast to places like the USA and Kiribati where height has increased less than the worldwide median while BMI has increased a great deal.

Change, over the 1928–1967 birth cohorts, in mean BMI vs. in mean height.

Each point shows one country. BMI change was calculated for mean BMI at 45–49 years of age – an age when diseases associated with excess weight become common but weight loss due to pre-existing disease is still uncommon. BMI data were available for 1975–2014 (NCD Risk Factor Collaboration, 2016); 45–49 year olds in these years correspond to 1928–1967 birth cohorts. BMI data were from a pooled analysis of 1698 population-based measurement studies with 19.2 million participants, with details reported elsewhere (NCD Risk Factor Collaboration, 2016).

https://doi.org/10.7554/eLife.13410.012

Discussion

We found that over the past century adult height has changed substantially and unevenly in the world’s countries, with no indication of convergence across countries. The height differential between the tallest and shortest populations was ~19 cm for men and ~20 cm for women a century ago, and has remained about the same for women and increased for men a century later despite substantial changes in the ranking of countries in terms of adult height.

Data from military conscripts and personnel have allowed reconstructing long-term trends in height in some European countries and the USA, albeit largely for men, and treating it as a 'mirror' to social and environmental conditions that affect nutrition, health and economic prosperity, in each generation and across generations (Tanner, 1987; Fogel, 2004; Komlos, 2009; Martins et al., 2014; Martorell, 1995). Our results on the large gains in continental European countries, and that they have overtaken English-speaking countries like the USA, are consistent with these earlier studies although these earlier analyses covered fewer countries in Eastern and Southern Europe, and used some self-reported data with simple adjustments that cannot fully correct for their bias (Hatton and Bray, 2010; Facchini and Gualdi-Russo, 1982; Baten and Blum, 2012).

Less has been known about trends in women’s height, and those in non-English-speaking/non-European parts of the world. We found that some of the most important changes in height have happened in these under-investigated populations. In particular, South Korean and Japanese men and women, and Iranian men, have had larger gains than European men, and similar trends are now happening in China and Thailand. These gains may partially account for the fact that women in Japan and South Korea have achieved the first and fourth highest life expectancy in the world (see also below). In contrast to East Asia’s impressive gains, the rise in height seems to have stopped early in South Asia and reversed in Africa, reversing or diminishing Africa’s earlier advantage over Asia. Prior studies have documented a rise in stunting in children in sub-Saharan Africa which continued to the mid-1990s (Stevens et al., 2012). Our results indicate that such childhood adversity may have carried forward to adulthood and be affecting health in the region. The early African advantage over Asia may also have been partly due to having a more diverse diet compared to the vegetable and cereal diet in Asia, partly facilitated by lower population density (Deaton, 2007; Moradi, 2010). Rising population, coupled with worsening economic status during structural adjustment, may have undermined earlier dietary advantage (Stevens et al., 2012; Pongou et al., 2006; Weil et al., 1990; Sundberg, 2009).

The main strengths of our study are its novel scope of estimating a century of trends in adult height for all countries in the world and for both sexes. Our population-based results complement the individual-level studies on the genetic and environmental determinants of within-population variation in height, and will help develop and test hypotheses about the determinants of adult height, and its health consequences. We achieved this by using a large number of population-based data sources from all regions of the world. We put particular emphasis on data quality and used only population-based data that had measured height, which avoids bias in self-reported height. Data were analysed according to a common protocol before being pooled, and characteristics and quality of data sources were verified through repeated checks by Collaborating Group members. Finally, we pooled data using a statistical model that could characterize non-linear trends and that used all available data while giving more weight to national data than to subnational and community surveys.

Although we have gathered an unprecedentedly comprehensive database of human height and growth, and have applied a statistical model that maximally utilizes the information in these sources, data in some countries were rather limited or were from community or sub-national studies. This is reflected in larger uncertainty of the estimated height in these countries. To overcome this, surveillance of growth, which has focused largely on children, should also systematically monitor adolescents and adults given the increasingly abundant evidence on their effects on adult health and human capital. Even measured height data can be subject to measurement error depending on how closely study protocols are followed. Finally, we did not have separate data on leg and trunk lengths, which may differ in their determinants, especially in relation to age at menarche and pre- vs. post-pubertal growth and nutrition, and health effects (Tanner et al., 1982; Frisch and Revelle, 1971).

Greater height in adulthood is both beneficially (cardiovascular and respiratory diseases) and harmfully (colorectal, postmenopausal breast and ovarian cancers, and possibly pancreatic, prostate and premenopausal breast cancers) associated with several diseases, independently of its inverse correlation with BMI (Paajanen et al., 2010; Emerging Risk Factors Collaboration, 2012; Green et al., 2011; Nelson et al., 2015; Batty et al., 2010; World Cancer Research Fund / American Institute for Cancer Research, 2007; 2010; 2011; 2012; 2014a; 2014b; Nüesch et al., 2015; Davies et al., 2015; Zhang et al., 2015). If the associations in epidemiological studies are causal, which is supported by the more recent evidence from Mendelian randomisation studies (Green et al., 2011; Nüesch et al., 2015; Davies et al., 2015; Zhang et al., 2015), the ~20 cm height range in the world is associated with a 17% lower risk of cardiovascular mortality and 20–40% higher risk of various site-specific cancers, in tall versus short countries. Consistent with individual-level evidence on the association between taller height and lower all-cause mortality in adult ages (Emerging Risk Factors Collaboration, 2012), gains in mean population height in successive cohorts are associated with lower mortality in middle and older ages in countries with reliable mortality data (correlation coefficient = −0.58 for men and −0.68 for women) (Figure 11), demonstrating the large impacts of height gain on population health and longevity. Further, short maternal stature increases the risk of small-for-gestational-age and preterm births, both risk factors for neonatal mortality, and of pregnancy complications (Kozuki et al., 2015; Black et al., 2008). Therefore, improvements vs. stagnation in women’s height can influence trends in infant and maternal mortality.

Association between change in probability of dying from any cause between 50 and 70 years of age and change in adult height by country for cohorts born between 1898 and 1946.

Probability of death was calculated using a cohort life table. Mortality data were available for 1950 to 2013. The 1898 birth cohort is the first cohort whose mortality experience at 50–54 years of age was seen in the data, and the 1946 birth cohort the last cohort whose mortality experience at 65–69 years of age was seen in the data. The dotted line shows the linear association. The 62 countries included have vital registration that is >80% complete and have data on all-cause mortality for at least 30 cohorts. The countries are Argentina, Australia, Austria, Azerbaijan, Belarus, Belgium, Belize, Brazil, Bulgaria, Canada, Chile, China (Hong Kong SAR), Colombia, Costa Rica, Croatia, Cuba, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Guatemala, Hungary, Iceland, Ireland, Israel, Italy, Japan, Kazakhstan, Kyrgyzstan, Latvia, Lithuania, Luxembourg, Macedonia (TFYR), Malta, Mauritius, Mexico, Moldova, Netherlands, New Zealand, Norway, Poland, Portugal, Puerto Rico, Romania, Russian Federation, Slovakia, Slovenia, South Korea, Spain, Sweden, Switzerland, Trinidad and Tobago, Turkmenistan, Ukraine, United Kingdom, United States of America, Uruguay, Uzbekistan and Venezuela.

https://doi.org/10.7554/eLife.13410.013

Our study also shows the potential for using height in early adulthood as an indicator that integrates across different dimensions of sustainable human development. Adult height signifies not only foetal and early childhood nutrition, which was included in the Millennium Development Goals, but also that of adolescents (Lancet, 2014). Further, adult height is a link between these early-life experiences and NCDs, longevity, education and earnings. It can easily be measured in health surveys and can be used to investigate differences across countries and trends over time, as done in our work, as well as within-country inequalities. Therefore, height in early adulthood, which varies substantially across countries and over time, provides a measurable indicator for sustainable development, with links to health and longevity, nutrition, education and economic productivity.

Materials and methods

Overview

We estimated trends in mean height for adults born from 1896 to 1996 (i.e., people who had reached their 18th birthday from 1914 to 2014) in 200 countries and territories. Countries were organized into 20 regions, mostly based on a combination of geography and national income (Supplementary file 1). Our study had two steps, described below. First, we identified, accessed, and re-analysed population-based measurement studies of human anthropometry. We then used a statistical model to estimate trends for all countries and territories.

Data sources

We used data sources that were representative of a national, subnational, or community population and had measured height. We did not use self-reported height because it is subject to systematic bias that varies by geography, time, age, sex, and socioeconomic characteristics like education and ethnicity (Engstrom et al., 2003; Connor Gorber et al., 2007; Wetmore and Mokdad, 2012; Schenker et al., 2010; Ezzati et al., 2006; Clarke et al., 2014; Hayes et al., 2011).

Data sources were included in the NCD-RisC database if:

  • measured data on height, weight, waist circumference, or hip circumference were available;

  • study participants were five years of age and older;

  • data were collected using a probabilistic sampling method with a defined sampling frame;

  • data were representative of the general population at the national, subnational, or community level;

  • data were from the countries and territories listed in Supplementary file 1.

We excluded data sources on population subgroups whose anthropometric status may differ systematically from the general population, including:

  • studies that had included or excluded people based on their health status or cardiovascular risk;

  • ethnic minorities;

  • specific educational, occupational, or socioeconomic subgroups of the population; and

  • those recruited through health facilities, with the exception noted below.

We used school-based data in countries where secondary school enrolment was 70% or higher, and used data whose sampling frame was health insurance schemes in countries where at least 80% of the population were insured. We used data collected through general practice and primary care clinics in high-income countries with universal insurance, because contact with the primary care systems tends to be at least as good as response rates for population-based surveys. No studies were excluded based on the level of height.

We used multiple routes for identifying and accessing data. We accessed publicly available population-based multi-country and national measurement surveys (e.g., Demographic and Health Surveys, and surveys identified via the Inter-University Consortium for Political and Social Research and European Health Interview & Health Examination Surveys Database) as well as the World Health Organization (WHO) STEPwise approach to Surveillance (STEPS) surveys. We requested identification and access to population-based data sources from ministries of health and other national health agencies, via WHO and its regional offices. Requests were also sent via the World Heart Federation to its national partners. We made a similar request to the NCD Risk Factor Collaboration (NCD-RisC; www.ncdrisc.org), a worldwide network of health researchers and practitioners working on NCD risk factors.

To identify major sources not accessed through the above routes, we searched and reviewed published studies. Specifically, we searched Medline (via PubMed) for articles published between 1st January 1950 and 12th March 2013 using the search terms 'body size'[mh:noexp] OR 'body height'[mh:noexp] OR 'body weight'[mh:noexp] OR 'birth weight'[mh:noexp] OR 'overweight'[mh:noexp] OR 'obesity'[mh] OR 'thinness'[mh:noexp] OR 'Waist-Hip Ratio'[mh:noexp] or 'Waist Circumference'[mh:noexp] or 'body mass index' [mh:noexp]) AND ('Humans'[mh]) AND('1950'[PDAT]: '2013'[PDAT]) AND ('Health Surveys'[mh] OR 'Epidemiological Monitoring'[mh] OR 'Prevalence'[mh]) NOT Comment[ptyp] NOT Case Reports[ptyp].

Articles were screened according to the inclusion and exclusion criteria described above. The number of articles identified and retained is summarised in Supplementary file 2. As described above, we contacted the corresponding authors of all eligible studies and invited them to join NCD-RisC. We did similar searches for other cardio-metabolic risk factors including blood pressure, serum cholesterol, and blood glucose. All eligible studies were invited to join NCD-RisC and were requested to analyse data on all cardio-metabolic risk factors.

Anonymised individual record data from sources included in NCD-RisC were re-analysed by the Pooled Analysis and Writing Group or by data holders according to a common protocol. All re-analysed data sources included mean height in standard age groups (18 years, 19 years, 20–29 years, followed by 10 year age groups and 80+ years), as well as sample sizes and standard errors. All analyses incorporated appropriate sample weights and complex survey design when applicable. To ensure summaries were prepared according to the study protocol, the Pooled Analysis and Writing Group provided computer code to NCD-RisC members who requested assistance. We also recorded information about the study population, period of measurement and sampling approach. This information was used to establish that each data source was population-based, and to assess whether it covered the whole country, multiple subnational regions, or one or a small number of communities, and whether it was rural, urban, or combined. All submitted data were checked by at least two independent members of the Pooled Analysis and Writing Group to ensure that their sample selection met the inclusion criteria and that height was measured and not self-reported. Questions and clarifications about sample design and measurement method were discussed with the Collaborating Group members and resolved before data were incorporated in the database. We also extracted data from additional national health surveys, one subnational STEPS survey, and six MONICA sites from published reports.

We identified duplicate data sources by comparing studies from the same country and year. Additionally, NCD-RisC members received the list of all data sources in the database and were asked to ensure that the included data from their country met the inclusion criteria and that there were no duplicates. Data sources used in our analysis are listed in Supplementary file 3.

In this paper, we used data on height in adulthood (18 years of age and older) from the NCD-RisC database for participants born between 1896 and 1996. We used 1472 population-based data sources with measurements on over 18.6 million adults born between 1896 and 1996 whose height had been measured. We did not use data from the 1860–1895 cohorts because data on these early cohorts were available for only six countries (American Samoa, India, Japan, Norway, Switzerland and USA). We had data for 179 of the 200 countries for which estimates were made; these 179 countries covered 97% of the world’s population. All countries had some data on people born after 1946 (second half of analysis period); 134 had data on people born between 1921 and 1945; and 72 had data on people born in 1920 or earlier. Across regions, there were between an average of 2.0 data sources per country in the Caribbean to 34 sources per country in high-income Asia Pacific. 1108 sources had data on men as well as women, 153 only on men, and 211 only on women.

Statistical methods

The statistical method is described in detail elsewhere (Danaei et al., 2011; Finucane et al., 2014). In summary, the model had a hierarchical structure in which estimates of mean height for each country and year were nested in regional levels and trends, which were in turn nested in those of super-regions and worldwide. In this structure, estimates of mean height for each country and year were informed by its own data, if available, and by data from other years in the same country and in other countries, especially those in the same region with data for similar time periods. The hierarchical structure shares information to a greater degree when data are non-existent or weakly informative (e.g., because they have a small sample size), and to a lesser extent in data-rich countries and regions.

We used birth cohort as the time scale of analysis. We calculated the birth cohort for each observation by subtracting the mid-age of its age group from the year in which data were collected. We modelled trends in height by birth cohort as a combination of linear and non-linear trends, both with a hierarchical structure; the non-linear trend was specified using a second-order random walk (Rue and Held, 2005). The model also included a term that allowed each birth cohort’s height to change as it aged, e.g., because there is gradual loss of height during ageing and because as a cohort ages those who survive may be taller. The model described by Finucane et al (Finucane et al., 2014) had used a cubic spline for age associations of risk factor levels. In practice, the estimated change in population mean height over age was linear with a small slope of over 0.2 cm shorter for men and 0.3 cm shorter for women with each decade of older age. Therefore, we used a linear specification for computational efficiency.

While all our data were from samples of the general population, 796 (54%) of data sources represented national populations, another 199 (14%) major sub-national regions (e.g., one or more provinces or regions of a country), and the remaining 477 (32%) one or a small number of communities. The model accounted for the fact that sub-national and community studies, while informative, might systematically differ from nationally representative ones, and also have larger variation relative to the true values than national studies (e.g., see data from China, India, Japan and the UK in Figure 6 and Figure 7).

We fitted the Bayesian model with the Markov chain Monte Carlo (MCMC) algorithm. We monitored mixing and convergence using trace plots and Brooks–Gelman–Rubin diagnostics (Brooks and Gelman, 1998). We obtained 5000 post burn-in samples from the posterior distribution of model parameters, used to obtain the posterior distribution of mean height. The reported credible intervals represent the 2.5th–97.5th percentiles of the posterior distribution. We report mean height at age 18 years for each birth cohort; heights at other ages are available from the authors. All analyses were done separately by sex because height and its trends over time may differ between men and women.

We tested how well our statistical model predicts missing values by removing data from 10% of countries with data (i.e., created the appearance of countries with no data where we actually had data). The countries whose data were withheld were randomly selected from the following three groups: data-rich (more than 25 cohorts of data, with at least five cohorts after 1960), data-poor (up to and including 12 cohorts of data for women and 8 cohorts for men), and average data availability (13 to 25 cohorts for women, 9 to 25 cohorts for men, or more than 25 cohorts in total with fewer than five after 1960). In total, there were 64 data-rich countries for women and 51 for men; 57 data-poor countries for women and 58 for men; and 56 countries for women and 60 for men that had average data availability. We fitted the model to the data from the remaining 90% of countries and made estimates of the held-out observations. We repeated the test five times, holding out a different subset of data in each repetition. We calculated the differences between the held-out data and the estimates. We also checked the 95% credible intervals of the estimates; in a model with good external predictive validity, 95% of held-out values would be included in the 95% credible intervals.

Our model performed extremely well; specifically, the estimates of mean height were unbiased as evidenced with median errors that were very close to zero globally, and less than ±0.2 cm in every subset of withheld data (Supplementary file 4). Even the 25th and 75th percentiles of errors rarely exceeded ±1 cm. Median absolute error was only about 0.5 cm, and did not exceed 1.0 cm in subsets of withheld data. The 95% credible intervals of estimated mean heights covered 97% of true data for both men and women, which implies good estimation of uncertainty; among subgroups of data, coverage was never < 90%.

References

  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
  7. 7
  8. 8
  9. 9
  10. 10
  11. 11
    Secular trends in growth
    1. TJ Cole
    (2000)
    The Proceedings of the Nutrition Society 59:317–324.
    https://doi.org/10.1017/S0029665100000355
  12. 12
  13. 13
  14. 14
  15. 15
  16. 16
    Height, health, and development
    1. A Deaton
    (2007)
    Proceedings of the National Academy of Sciences 104:13232–13237.
    https://doi.org/10.1073/pnas.0611500104
  17. 17
  18. 18
  19. 19
  20. 20
    Worldwide Variation in Human Growth
    1. PB Eveleth
    2. JM Tanner
    (1990)
    Cambridge: Cambridge University Press.
  21. 21
  22. 22
  23. 23
  24. 24
  25. 25
    The Changing Body: Health, Nutrition and Human Development in the Western World Since 1700
    1. R Floud
    2. RW Fogel
    3. B Harris
    4. S Hong
    (2011)
    Cambridge, UK: New York, United States of America: Cambridge University Press.
  26. 26
  27. 27
  28. 28
  29. 29
  30. 30
  31. 31
  32. 32
  33. 33
  34. 34
  35. 35
  36. 36
  37. 37
  38. 38
  39. 39
  40. 40
  41. 41
  42. 42
  43. 43
  44. 44
    Results and implications of the INCAP follow-up study
    1. R Martorell
    (1995)
    Journal of Nutrition 125:1127S–1138.
  45. 45
  46. 46
  47. 47
  48. 48
  49. 49
  50. 50
  51. 51
    Gaussian Markov Random Fields: Theory and Applications
    1. H Rue
    2. L Held
    (2005)
    Boca Raton: Chapman & Hall/CRC.
  52. 52
  53. 53
  54. 54
  55. 55
  56. 56
  57. 57
  58. 58
    Health, nutrition, and economic development
    1. J Strauss
    2. D Thomas
    (1998)
    Journal of Economic Literature 36:766–817.
  59. 59
  60. 60
  61. 61
    Agriculture, poverty and growth in Africa: linkages and policy challenges
    1. S Sundberg
    (2009)
    CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, 4, 10.1079/PAVSNNR20094005.
  62. 62
  63. 63
  64. 64
    Growth at Adolescence
    1. JM Tanner
    (1962)
    Oxford: Blackwell Scientific Publications.
  65. 65
    A History of the Study of Human Growth
    1. JM Tanner
    (1981)
    Cambridge: Cambridge University Press.
  66. 66
  67. 67
  68. 68
    How Was Life?: Global Well-Being Since 1820
    1. JL van Zanden
    2. J Baten
    3. M Mira d'Ercole
    4. A Rijpma
    5. C Smith
    6. M Timmer
    (2014)
    Paris, France: OECD Publishing.
  69. 69
  70. 70
    The Impact of Development Policies on Health: A Review of the Literature
    1. DEC Weil
    2. AP Alicbusan
    3. JF Wilson
    4. MR Reich
    5. DJ Bradley
    (1990)
    Geneva: World Health Organization.
  71. 71
  72. 72
  73. 73
  74. 74
  75. 75
  76. 76
  77. 77
  78. 78
    Height and Breast Cancer Risk: Evidence From Prospective Studies and Mendelian Randomization
    1. B Zhang
    2. XO Shu
    3. RJ Delahanty
    4. C Zeng
    5. K Michailidou
    6. MK Bolla
    7. Q Wang
    8. J Dennis
    9. W Wen
    10. J Long
    11. C Li
    12. AM Dunning
    13. J Chang-Claude
    14. M Shah
    15. BJ Perkins
    16. K Czene
    17. H Darabi
    18. M Eriksson
    19. SE Bojesen
    20. BG Nordestgaard
    21. SF Nielsen
    22. H Flyger
    23. D Lambrechts
    24. P Neven
    25. H Wildiers
    26. G Floris
    27. MK Schmidt
    28. MA Rookus
    29. K van den Hurk
    30. WL de Kort
    31. FJ Couch
    32. JE Olson
    33. E Hallberg
    34. C Vachon
    35. A Rudolph
    36. P Seibold
    37. D Flesch-Janys
    38. J Peto
    39. I Dos-Santos-Silva
    40. O Fletcher
    41. N Johnson
    42. H Nevanlinna
    43. TA Muranen
    44. K Aittomäki
    45. C Blomqvist
    46. J Li
    47. K Humphreys
    48. J Brand
    49. P Guénel
    50. T Truong
    51. E Cordina-Duverger
    52. F Menegaux
    53. B Burwinkel
    54. F Marme
    55. R Yang
    56. H Surowy
    57. J Benitez
    58. MP Zamora
    59. JI Perez
    60. A Cox
    61. SS Cross
    62. MW Reed
    63. IL Andrulis
    64. JA Knight
    65. G Glendon
    66. S Tchatchou
    67. EJ Sawyer
    68. I Tomlinson
    69. MJ Kerin
    70. N Miller
    71. G Chenevix-Trench
    72. CA Haiman
    73. BE Henderson
    74. F Schumacher
    75. LL Marchand
    76. A Lindblom
    77. S Margolin
    78. MJ Hooning
    79. JW Martens
    80. MM Tilanus-Linthorst
    81. JM Collée
    82. JL Hopper
    83. MC Southey
    84. H Tsimiklis
    85. C Apicella
    86. S Slager
    87. AE Toland
    88. CB Ambrosone
    89. D Yannoukakos
    90. GG Giles
    91. RL Milne
    92. C McLean
    93. PA Fasching
    94. L Haeberle
    95. AB Ekici
    96. MW Beckmann
    97. H Brenner
    98. AK Dieffenbach
    99. V Arndt
    100. C Stegmaier
    101. AJ Swerdlow
    102. A Ashworth
    103. N Orr
    104. M Jones
    105. J Figueroa
    106. M Garcia-Closas
    107. L Brinton
    108. J Lissowska
    109. M Dumont
    110. R Winqvist
    111. K Pylkäs
    112. A Jukkola-Vuorinen
    113. M Grip
    114. H Brauch
    115. T Brüning
    116. YD Ko
    117. P Peterlongo
    118. S Manoukian
    119. B Bonanni
    120. P Radice
    121. N Bogdanova
    122. N Antonenkova
    123. T Dörk
    124. A Mannermaa
    125. V Kataja
    126. VM Kosma
    127. JM Hartikainen
    128. P Devilee
    129. C Seynaeve
    130. CJ Van Asperen
    131. A Jakubowska
    132. J Lubiński
    133. K Jaworska-Bieniek
    134. K Durda
    135. U Hamann
    136. D Torres
    137. RK Schmutzler
    138. SL Neuhausen
    139. H Anton-Culver
    140. VN Kristensen
    141. GI Grenaker Alnæs
    142. BL Pierce
    143. P Kraft
    144. U Peters
    145. S Lindstrom
    146. D Seminara
    147. S Burgess
    148. H Ahsan
    149. AS Whittemore
    150. EM John
    151. MD Gammon
    152. KE Malone
    153. DC Tessier
    154. D Vincent
    155. F Bacot
    156. C Luccarini
    157. C Baynes
    158. S Ahmed
    159. M Maranian
    160. CS Healey
    161. A González-Neira
    162. G Pita
    163. MR Alonso
    164. N Álvarez
    165. D Herrero
    166. PD Pharoah
    167. J Simard
    168. P Hall
    169. DJ Hunter
    170. DF Easton
    171. W Zheng
    172. kConFab Investigators, Australian Ovarian Study Group
    173. DRIVE Project
    (2015)
    Journal of the National Cancer Institute 107:djv219.
    https://doi.org/10.1093/jnci/djv219

Decision letter

  1. Eduardo Franco
    Reviewing Editor; McGill University, Canada

In the interests of transparency, eLife includes the editorial decision letter and accompanying author responses. A lightly edited version of the letter sent to the authors after peer review is shown, indicating the most substantive concerns; minor comments are not usually included.

Thank you for submitting your work entitled "The height of the world – A century of trends in adult human height" for consideration by eLife. Your article has been reviewed by two peer reviewers, and the evaluation has been overseen by Eduardo Franco, as a Reviewing Editor, and Prabhat Jha, as the Senior Editor. M Dawn Teare, a Member of eLife's Board of Reviewing Editors served as one of the reviewers and agreed to reveal her identity.

The reviewers have discussed the reviews with one another and the Reviewing Editor has drafted this decision to help you prepare a revised submission.

Summary:

This paper is a substantial and impressive report submitted on behalf of the NCD Risk Factor Collaboration. It represents a huge and extremely valuable new assemblage of data, including adult height measurements for around 15.4 million individuals born between 1896 and 1996 from 178 countries around the globe. Never before has such comprehensive data on stature been brought together, bearing on trends and differentials across the globe in health, nutrition, economy, and anthropometry. This collaborative group has published several papers now using this methodology, tackling a different health outcome in each paper. Here the health outcome is adult height and the team has systematically collected adult height measurements from 1450 studies from 178 countries for adults born between 1896 and 1996 and used a hierarchical Bayesian model to analyse trends over 100 years. Adult height lends itself nicely to this sort of analysis as the assumption is that height is pretty constant after 18, whereas weight (and hence BMI) is a much less stable measurement.

Essential revisions:

Structure and Organization:

The paper is difficult to read and some investment in visualisation tools would greatly enhance its value. The maps after the References section are very nice and easy to fit into the article in a pdf form. However, the country by gender plots need to be made a bit more accessible as these are the more interesting results summarizing the trends.

Please revise the Abstract and Introduction with due attention to providing factual material only. As they stand, the findings listed in the Abstract and Introduction would hardly justify publication. They are tidbits, engaging the curiosity of readers and showing off the scope of the assembled data, but not settling open questions of theoretical interest. Everyone knows that nutritional status across the world has not converged to some common level. Finding “no indication of convergence across countries” in mean adult heights is hardly news.

The paper has a number of strengths that do not come across in the Abstract. They have systematically searched for sampled measured data rather than self-reports; they have collected a large amount of data on women and have data from 178 countries. This means that the work is a substantial step up from other studies of trends in height. I think the paper is too short. Please explain the BMI analysis referred to in Figure 6.

The main text and figures are valuable. The 165 pages of Supplementary Information, in contrast, do not belong in the publication. The lists of NCD Risk Factor Collaborators and the long table of data sources belong on a Project Website with hyperlink pointers in the article, or perhaps as a separate appendix hosted in the journal. Some details of the validation study might reasonably belong an appendix, but the validation study as it stands is not entirely convincing. The uncertainties of importance relate to the out-of-sample-range extrapolations to timeframes and countries without datasets, whereas the cross-validation mainly measures success at within-sample-range interpolations within sets of times and cases where relevant datasets are available.

Data Analysis:

What is the specification of the Bayesian model in use here for filling in missing data and extrapolating back into the past and outward to nations with limited sets of direct measurements? The paper directs readers to Danaei et al., 2011 and Finucane et al., 2014 for details of the model, but the Bayesian models in those references pertain to systolic blood pressure and to health status, not to heights. Heights pose many different issues, particularly when only 70 of the 178 countries have data for cohorts born before 1920 and 22 of 200 countries for which estimates are generated have no data at all. Presumably, the model here incorporates features needed for application to heights, but nothing is spelled out. Toward the end of this review is a list of some of the model features that would seem important to describe.

In what form and under what arrangements are these data to be made available to the wider community of researchers? Is the creation of a data resource for heights along the lines of the Human Mortality Database and the Human Fertility Database underway? This question arises not only with regard to compliance with data-sharing requirements of eLife and other top journals, but also with regard to the wide range of scientific questions that could be addressed with these data. What is already treated in this paper hardly scratches the surface.

Please provide details on the Bayesian model regarding the following:

A) growth curves by age;

B) the “linear and non-linear” trends in mean age over time;

C) non-normality at younger and older ages;

D) variability in standard deviations and its relationship to the homogeneity or heterogeneity of each measured population;

E) smoothing (B-splines?);

F) covariance structures within region by age and time;

G) sample information with regard to measurement scales in centimeters or inches, with or without shoes (or unknown), degree of rounding, etc.

https://doi.org/10.7554/eLife.13410.018

Author response

Essential revisions:

Structure and Organization:

The paper is difficult to read and some investment in visualisation tools would greatly enhance its value. The maps after the References section are very nice and easy to fit into the article in a pdf form. However, the country by gender plots need to be made a bit more accessible as these are the more interesting results summarizing the trends.

We take this comment to refer to old Figure 3 (new Figures 4 and 5), the long “ladder” plot of all countries. As the reviewer has correctly pointed out, with 200 countries, this figure would be best suited to a dynamic visualisation. We have developed the needed technology (see http://www.ncdrisc.org/ranking-bmi.html for what it looks likes for BMI) and will release similar graphs for height upon the paper’s publication. If eLife system allows, the current static figure can be replaced with an embedded dynamic one on the Journal’s website while the static one appears in the PDF. We would be happy to finalise the specifics with the Editors and the production team.

Please revise the Abstract and Introduction with due attention to providing factual material only. As they stand, the findings listed in the Abstract and Introduction would hardly justify publication. They are tidbits, engaging the curiosity of readers and showing off the scope of the assembled data, but not settling open questions of theoretical interest. Everyone knows that nutritional status across the world has not converged to some common level. Finding “no indication of convergence across countries” in mean adult heights is hardly news.

We have done as suggested for Abstract. The Introduction contains only a concise summary of current literature in the field, and the contribution of the paper; to the best of our ability, it is entirely factual.

The paper has a number of strengths that do not come across in the Abstract. They have systematically searched for sampled measured data rather than self-reports; they have collected a large amount of data on women and have data from 178 countries. This means that the work is a substantial step up from other studies of trends in height. I think the paper is too short. Please explain the BMI analysis referred to in Figure 6.

We understand that the Abstract is restricted to ~150 words. With this constraint in mind, we have stated that the data used in the paper were from “reanalysis” of “population-based studies with measurement of height” and have stated the number of studies and participants.

The paper that presents the BMI analysis is now published and has been cited (NCD Risk Factor Collaboration, 2016), together with a concise statement on its scope. We would be happy to provide more information in this paper if it is deemed informative to repeat the materials here.

The main text and figures are valuable. The 165 pages of Supplementary Information, in contrast, do not belong in the publication. The lists of NCD Risk Factor Collaborators and the long table of data sources belong on a Project Website with hyperlink pointers in the article, or perhaps as a separate appendix hosted in the journal. Some details of the validation study might reasonably belong an appendix, but the validation study as it stands is not entirely convincing. The uncertainties of importance relate to the out-of-sample-range extrapolations to timeframes and countries without datasets, whereas the cross-validation mainly measures success at within-sample-range interpolations within sets of times and cases where relevant datasets are available.

We request to keep the list of data sources because it is increasingly the norm in presenting global health estimates to state the data sources used in the analysis (soon to become a part of reporting guidelines). We have removed the country-specific graphs as suggested, and will show these on NCD-RisC website upon the paper’s publication.

Our data use agreement with our collaborators requires listing all of the authors, which has been done even in print journals (see for example http://www.thelancet.com/journals/lancet/article/PIIS0140-6736(16)30054-X/fulltext and http://www.thelancet.com/journals/lancet/article/PIIS0140-6736(16)00618-8/fulltext; see http://www.ncbi.nlm.nih.gov/pubmed/26109024 for how this appears in PubMed). Therefore, we request to be allowed to include the full list of authors especially given that eLife is published online.

The validation analysis is entirely out of sample validation. We removed data for specific countries (i.e. they are no longer in the sample of countries with data) and tested how well the model predicts the known-but-withheld/removed data. We have attempted to clarify this procedure in the revised paper (subsection “Author contributions”).

Data Analysis:

What is the specification of the Bayesian model in use here for filling in missing data and extrapolating back into the past and outward to nations with limited sets of direct measurements? The paper directs readers to Danaei et al., 2011 and Finucane et al., 2014 for details of the model, but the Bayesian models in those references pertain to systolic blood pressure and to health status, not to heights. Heights pose many different issues, particularly when only 70 of the 178 countries have data for cohorts born before 1920 and 22 of 200 countries for which estimates are generated have no data at all. Presumably, the model here incorporates features needed for application to heights, but nothing is spelled out. Toward the end of this review is a list of some of the model features that would seem important to describe.

One of the two papers cited is a methodological paper that lays out the Bayesian model used here; the appendix of the other has full model specification even if the paper’s substance involves its application to blood pressure. Nonetheless, as suggested below, we have added additional details regarding the model (subsection “Statistical methods”, fourth paragraph).

In what form and under what arrangements are these data to be made available to the wider community of researchers? Is the creation of a data resource for heights along the lines of the Human Mortality Database and the Human Fertility Database underway? This question arises not only with regard to compliance with data-sharing requirements of eLife and other top journals, but also with regard to the wide range of scientific questions that could be addressed with these data. What is already treated in this paper hardly scratches the surface.

NCD-RisC is a data pooling analysis that uses secondary data. Some of our data are from public sources and we would be happy to point others to the relevant sites for these sources, or provide the data. Other sources are provided either by specific scientists or national health agencies. For these, we will be happy to provide contact information of the data provider for requests to be made.

Please provide details on the Bayesian model regarding the following:

A) growth curves by age;

We have specified the age component of the model (subsection “Statistical methods”, fourth paragraph), noting that we model population mean height over age from age 18, so it is not growth at the individual level.

B) the “linear and non-linear” trends in mean age over time;

Done (subsection “Statistical methods”, fourth paragraph).

C) non-normality at younger and older ages;

We do not model individual height, for which non-normality may be an issue. Rather our analysis models mean height of the population, and its distribution across countries and health surveys. We rely on standard central limit theorem as justification for treating mean height as normally distributed across countries/surveys (Finucane et al., 2014) with error around the true population mean, which is the quantity of interest. We also considered (and have used elsewhere (Stevens et al, 2012; Finucane et al., 2015) a t4 distribution which, by having heavier tails, allows for outlier studies. The results of the current analysis were not sensitive to choice, confirming that the normal prior appropriately described the distribution of mean height.

D) variability in standard deviations and its relationship to the homogeneity or heterogeneity of each measured population;

As mentioned above, the analysis and modelling are of the mean height, so the only relevant standard deviation is the standard error of the sample means. Standard errors were computed together with sample means when NCD-RisC members re-analysed each data source. The standard deviations of each data source study are reflected in the standard errors used in specifying the distribution of the sample means.

E) smoothing (B-splines?);

The smoothing of time trends is done using a 2nd order conditional auto-regressive model (also known as random walk), specified in the revised paper with appropriate citation (subsection “Statistical methods”, second paragraph).

F) covariance structures within region by age and time;

The covariance between different birth cohorts (i.e., the time scale in our model) is induced by the conditional auto-regressive structure. Formally, the auto-regressive model induces a particular precision (inverse covariance) structure for cohorts within a country and the induced covariance is therefore the inverse of that. The linear and non-linear components of this auto-regressive structure, as well as its intercept, are modelled hierarchically so the effects for each country borrow from the region to the extent that the data suggest that countries within a region have similar levels and trends across cohort. This induces covariance between countries within a region, even if not modelled explicitly. Such hierarchical structure is a standard strategy for accounting for dependence in statistical modelling. With regard to age, as stated in the revised paper, population mean adult height declined by only a small amount as the birth cohort ages (subsection “Statistical methods”, second paragraph). Nonetheless, the use of an age model introduces dependence in height over age.

G) sample information with regard to measurement scales in centimeters or inches, with or without shoes (or unknown), degree of rounding, etc.

A few data sources were in inches or meters and were converted to centimetres, which is of course an entirely deterministic calculation. To our knowledge, self-report is the single most important source of bias in adult height data. A major strength of our paper is the exclusive use of measured data and the exclusion of self-reported height. Removal of shoes is a part of the standard protocol of health and nutrition surveys (Madden et al, 2016). Our sources are high-quality health/nutrition surveys and epidemiological studies, and we expect removing shoes to be a part of their protocol. We have nonetheless stated measurement error as a potential limitation of population-based data (Discussion, sixth paragraph).

References

Finucane MM, Paciorek CJ, Stevens GA, Ezzati M. Semiparametric Bayesian density estimation with disparate data sources: a meta-analysis of global childhood undernutrition. J Am Stat Assoc 2015; 110(511): 889-901.

Madden AM, Smith S. Body composition and morphological assessment of nutritional status in adults: a review of anthropometric variables. J Hum Nutr Diet 2016; 29(1): 7-25.

https://doi.org/10.7554/eLife.13410.019

Article and author information

Author details

  1. NCD Risk Factor Collaboration (NCD-RisC)

    Contribution
    NCDRFC(NCD-RisC), collectively contributed to the research and manuscript. Members of the Country and Regional Data Group collected and reanalysed data, and checked pooled data for accuracy of information about their study and other studies in their country. MDC led data collection and JB led the statistical analysis and prepared results. Members of the Pooled Analysis and Writing Group collated data, checked all data sources in consultation with the Country and Regional Data Group, analysed pooled data, and prepared results. ME designed the study, oversaw research, and wrote the first draft of the report with input from other members of Pooled Analysis and Writing Group. Members of Country and Regional Data Group commented on draft report.
    For correspondence
    1. majid.ezzati@imperial.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    1. James Bentham, Imperial College London, United Kingdom
    2. Mariachiara Di Cesare, Middlesex University, United Kingdom
    3. Gretchen A Stevens, World Health Organization, Switzerland
    4. Bin Zhou, Imperial College London, United Kingdom
    5. Honor Bixby, Imperial College London, United Kingdom
    6. Melanie Cowan, World Health Organization, Switzerland
    7. Léa Fortunato, Imperial College London, United Kingdom
    8. James E Bennett, Imperial College London, United Kingdom
    9. Goodarz Danaei, Harvard T.H. Chan School of Public Health, United States
    10. Kaveh Hajifathalian, Harvard T.H. Chan School of Public Health, United States
    11. Yuan Lu, Harvard T.H. Chan School of Public Health, United States
    12. Leanne M Riley, World Health Organization, Switzerland
    13. Avula Laxmaiah, Indian Council of Medical Research, India
    14. Vasilis Kontis, Imperial College London, United Kingdom
    15. Christopher J Paciorek, University of California, Berkeley, United States
    16. Elio Riboli, Imperial College London, United Kingdom
    17. Majid Ezzati, Imperial College London, United Kingdom
    18. Ziad A Abdeen, Al-Quds University, Palestine
    19. Zargar Abdul Hamid, Center for Diabetes and Endocrine Care, India
    20. Niveen M Abu-Rmeileh, Birzeit University, Palestine
    21. Benjamin Acosta-Cazares, Instituto Mexicano del Seguro Social, Mexico
    22. Robert Adams, The University of Adelaide, Australia
    23. Wichai Aekplakorn, Mahidol University, Thailand
    24. Carlos A Aguilar-Salinas, Instituto Nacional de Ciencias Médicas y Nutricion, Mexico
    25. Charles Agyemang, University of Amsterdam, The Netherlands
    26. Alireza Ahmadvand, Non-Communicable Diseases Research Center, Iran
    27. Wolfgang Ahrens, Leibniz Institute for Prevention Research and Epidemiology - BIPS, Germany
    28. Hazzaa M Al-Hazzaa, King Saud University, Saudi Arabia
    29. Amani Rashed Al-Othman, Kuwait Institute for Scientific Research, Kuwait
    30. Rajaa Al Raddadi, Ministry of Health, Saudi Arabia
    31. Mohamed M Ali, World Health Organization Regional Office for the Eastern Mediterranean, Egypt
    32. Ala'a Alkerwi, Luxembourg Institute of Health, Luxembourg
    33. Mar Alvarez-Pedrerol, ISGlobal Centre for Research in Environmental Epidemiology, Spain
    34. Eman Aly, World Health Organization Regional Office for the Eastern Mediterranean, Egypt
    35. Philippe Amouyel, Lille University and Hospital, France
    36. Antoinette Amuzu, London School of Hygiene & Tropical Medicine, United Kingdom
    37. Lars Bo Andersen, Sogn and Fjordane University College, Norway
    38. Sigmund A Anderssen, Norwegian School of Sport Sciences, Norway
    39. Ranjit Mohan Anjana, Madras Diabetes Research Foundation, India
    40. Hajer Aounallah-Skhiri, National Institute of Public Health, Tunisia
    41. Inger Ariansen, Norwegian Institute of Public Health, Norway
    42. Tahir Aris, Ministry of Health Malaysia, Malaysia
    43. Nimmathota Arlappa, Indian Council of Medical Research, India
    44. Dominique Arveiler, University of Strasbourg and Strasbourg University Hospital, France
    45. Felix K Assah, University of Yaoundé 1, Cameroon
    46. Mária Avdicová, Regional Authority of Public Health, Banská Bystrica, Slovakia
    47. Fereidoun Azizi, Shahid Beheshti University of Medical Sciences, Iran
    48. Bontha V Babu, Indian Council of Medical Research, India
    49. Suhad Bahijri, King Abdulaziz University, Saudi Arabia
    50. Nagalla Balakrishna, Indian Council of Medical Research, India
    51. Piotr Bandosz, Medical University of Gdansk, Poland
    52. José R Banegas, Universidad Autónoma de Madrid, Spain
    53. Carlo M Barbagallo, University of Palermo, Italy
    54. Alberto Barceló, Pan American Health Organization, United States
    55. Amina Barkat, Mohammed V University de Rabat, Morocco
    56. Mauro V Barros, University of Pernambuco, Brazil
    57. Iqbal Bata, Dalhousie University, Canada
    58. Anwar M Batieha, Jordan University of Science and Technology, Jordan
    59. Rosangela L Batista, Federal University of Maranhao, Brazil
    60. Louise A Baur, University of Sydney, Australia
    61. Robert Beaglehole, University of Auckland, New Zealand
    62. Habiba Ben Romdhane, University Tunis El Manar, Tunisia
    63. Mikhail Benet, University Medical Science, Cuba
    64. James E Bennett, Imperial College London, United Kingdom
    65. Antonio Bernabe-Ortiz, Universidad Peruana Cayetano Heredia, Peru
    66. Gailute Bernotiene, Lithuanian University of Health Sciences, Lithuania
    67. Heloisa Bettiol, University of São Paulo, Brazil
    68. Aroor Bhagyalaxmi, B. J. Medical College, India
    69. Sumit Bharadwaj, Chirayu Medical College, India
    70. Santosh K Bhargava, Sunder Lal Jain Hospital, India
    71. Zaid Bhatti, The Aga Khan University, Pakistan
    72. Zulfiqar A Bhutta, The Hospital for Sick Children, Canada
    73. Hongsheng Bi, Shandong University of Traditional Chinese Medicine, China
    74. Yufang Bi, Shanghai Jiao-Tong University School of Medicine, China
    75. Peter Bjerregaard, University of Southern Denmark, Denmark
    76. Espen Bjertness, University of Oslo, Norway
    77. Marius B Bjertness, University of Oslo, Norway
    78. Cecilia Björkelund, University of Gothenburg, Sweden
    79. Anneke Blokstra, National Institute for Public Health and the Environment, The Netherlands
    80. Simona Bo, University of Turin, Italy
    81. Martin Bobak, University College London, United Kingdom
    82. Lynne M Boddy, Liverpool John Moores University, United Kingdom
    83. Bernhard O Boehm, Nanyang Technological University, Singapore
    84. Heiner Boeing, German Institute of Human Nutrition, Germany
    85. Carlos P Boissonnet, CEMIC, Argentina
    86. Vanina Bongard, Toulouse University School of Medicine, France
    87. Pascal Bovet, Ministry of Health, Seychelles
    88. Lutgart Braeckman, Ghent University, Belgium
    89. Marjolijn CE Bragt, FrieslandCampina, Singapore
    90. Imperia Brajkovich, Universidad Central de Venezuela, Venezuela
    91. Francesco Branca, World Health Organization, Switzerland
    92. Juergen Breckenkamp, Bielefeld University, Germany
    93. Hermann Brenner, German Cancer Research Center, Germany
    94. Lizzy M Brewster, University of Amsterdam, The Netherlands
    95. Garry R Brian, The Fred Hollows Foundation New Zealand, New Zealand
    96. Graziella Bruno, University of Turin, Italy
    97. HB(as) Bueno-de-Mesquita, National Institute for Public Health and the Environment, The Netherlands
    98. Anna Bugge, University of Southern Denmark, Denmark
    99. Con Burns, Cork Institute of Technology, Ireland
    100. Antonio Cabrera de León, Universidad de La Laguna, Spain
    101. Joseph Cacciottolo, University of Malta, Malta
    102. Tilema Cama, Ministry of Health, Tonga
    103. Christine Cameron, Canadian Fitness and Lifestyle Research Institute, Canada
    104. José Camolas, Hospital Santa Maria, CHLN
    105. Günay Can, Istanbul University, Turkey
    106. Ana Paula C Cândido, Universidade Federal de Juiz de Fora, Brazil
    107. Vincenzo Capuano, Cardiologia di Mercato S. Severino, Italy
    108. Viviane C Cardoso, University of São Paulo, Brazil
    109. Axel C Carlsson, Karolinska Institutet, Sweden
    110. Maria J Carvalho, University of Porto, Portugal
    111. Felipe F Casanueva, Santiago de Compostela University, Spain
    112. Juan-Pablo Casas, University College London, United Kingdom
    113. Carmelo A Caserta, Associazione Calabrese di Epatologia, Italy
    114. Snehalatha Chamukuttan, India Diabetes Research Foundation, India
    115. Angelique W Chan, Duke-NUS Graduate Medical School, Singapore
    116. Queenie Chan, Imperial College London, United Kingdom
    117. Himanshu K Chaturvedi, National Institute of Medical Statistics, India
    118. Nishi Chaturvedi, University College London, United Kingdom
    119. Chien-Jen Chen, Academia Sinica, Taiwan
    120. Fangfang Chen, Capital Institute of Pediatrics, China
    121. Huashuai Chen, Duke University, United States
    122. Shuohua Chen, Kailuan General Hospital, China
    123. Zhengming Chen, University of Oxford, United Kingdom
    124. Ching-Yu Cheng, Duke-NUS Graduate Medical School, Singapore
    125. Angela Chetrit, The Gertner Institute for Epidemiology and Health Policy Research, Israel
    126. Arnaud Chiolero, Lausanne University Hospital, Switzerland
    127. Shu-Ti Chiou, Ministry of Health and Welfare, Taiwan
    128. Adela Chirita-Emandi, Victor Babes University of Medicine and Pharmacy Timisoara, Romania
    129. Belong Cho, Seoul National University College of Medicine, South Korea
    130. Yumi Cho, Korea Centers for Disease Control and Prevention, South Korea
    131. Kaare Christensen, University of Southern Denmark, Denmark
    132. Jerzy Chudek, Medical University of Silesia, Poland
    133. Renata Cifkova, Charles University in Prague, Czech Republic
    134. Frank Claessens, Katholieke Universiteit Leuven, Belgium
    135. Els Clays, Ghent University, Belgium
    136. Hans Concin, Agency for Preventive and Social Medicine, Austria
    137. Cyrus Cooper, University of Southampton, United Kingdom
    138. Rachel Cooper, University College London, United Kingdom
    139. Tara C Coppinger, Cork Institute of Technology, Ireland
    140. Simona Costanzo, IRCCS Istituto Neurologico Mediterraneo Neuromed, Italy
    141. Dominique Cottel, Institut Pasteur de Lille, France
    142. Chris Cowell, Westmead University of Sydney, Australia
    143. Cora L Craig, Canadian Fitness and Lifestyle Research Institute, Canada
    144. Ana B Crujeiras, CIBEROBN, Spain
    145. Graziella D'Arrigo, National Council of Research, Italy
    146. Eleonora d'Orsi, Federal University of Santa Catarina, Brazil
    147. Jean Dallongeville, Institut Pasteur de Lille, France
    148. Albertino Damasceno, Eduardo Mondlane University, Mozambique
    149. Camilla T Damsgaard, University of Copenhagen, Denmark
    150. Goodarz Danaei, Harvard TH Chan School of Public Health, United States
    151. Rachel Dankner, The Gertner Institute for Epidemiology and Health Policy Research, Israel
    152. Luc Dauchet, Lille University Hospital, France
    153. Guy De Backer, Ghent University, Belgium
    154. Dirk De Bacquer, Ghent University, Belgium
    155. Giovanni de Gaetano, IRCCS Istituto Neurologico Mediterraneo Neuromed, Italy
    156. Stefaan De Henauw, Ghent University, Belgium
    157. Delphine De Smedt, Ghent University, Belgium
    158. Mohan Deepa, Madras Diabetes Research Foundation, India
    159. Alexander D Deev, National Research Centre for Preventive Medicine, Russia
    160. Abbas Dehghan, Erasmus Medical Center Rotterdam, The Netherlands
    161. Héléne Delisle, University of Montreal, Canada
    162. Francis Delpeuch, Institut de Recherche pour le Développement, France
    163. Valérie Deschamps, French Public Health Agency, France
    164. Klodian Dhana, Erasmus Medical Center Rotterdam, The Netherlands
    165. Augusto F Di Castelnuovo, IRCCS Istituto Neurologico Mediterraneo Neuromed, Italy
    166. Juvenal Soares Dias-da-Costa, Universidade do Vale do Rio dos Sinos, Brazil
    167. Alejandro Diaz, National Council of Scientific and Technical Research, Argentina
    168. Shirin Djalalinia, Non-Communicable Diseases Research Center, Iran
    169. Ha TP Do, National Institute of Nutrition, Vietnam
    170. Annette J Dobson, University of Queensland, Australia
    171. Chiara Donfrancesco, Istituto Superiore di Sanità, Italy
    172. Silvana P Donoso, Universidad de Cuenca, Ecuador
    173. Angela Döring, Helmholtz Zentrum München, Germany
    174. Kouamelan Doua, Ministére de la Santé et de la Lutte Contre le Sida, Côte d’Ivoire
    175. Wojciech Drygas, The Cardinal Wyszynski Institute of Cardiology, Poland
    176. Vilnis Dzerve, University of Latvia, Latvia, Europe
    177. E Egbagbe, University of Benin, Nigeria
    178. Robert Eggertsen, University of Gothenburg, Sweden
    179. Ulf Ekelund, Norwegian School of Sport Sciences, Norway
    180. Jalila El Ati, National Institute of Nutrition and Food Technology, Tunisia
    181. Paul Elliott, Imperial College London, United Kingdom
    182. Reina Engle-Stone, University of California Davis, United States
    183. Rajiv T Erasmus, University of Stellenbosch, South Africa
    184. Cihangir Erem, Karadeniz Technical University, Turkey
    185. Louise Eriksen, University of Southern Denmark, Denmark
    186. Jorge Escobedo-de la Peña, Instituto Mexicano del Seguro Social, Mexico
    187. Alun Evans, The Queen's University of Belfast, United Kingdom
    188. David Faeh, University of Zurich, Switzerland
    189. Caroline H Fall, University of Southampton, United Kingdom
    190. Farshad Farzadfar, Tehran University of Medical Sciences, Iran
    191. Francisco J Felix-Redondo, Centro de Salud Villanueva Norte, Spain
    192. Trevor S Ferguson, The University of the West Indies, Jamaica
    193. Daniel Fernández-Bergés, Hospital Don Benito-Villanueva de la Serena, Spain
    194. Daniel Ferrante, Ministry of Health, Argentina
    195. Marika Ferrari, Council for Agricultural Research and Economics, Italy
    196. Catterina Ferreccio, Pontificia Universidad Católica de Chile, Chile
    197. Jean Ferrieres, Toulouse University School of Medicine, France
    198. Joseph D Finn, University of Manchester, United Kingdom
    199. Krista Fischer, University of Tartu, Estonia
    200. Eric Monterubio Flores, Instituto Nacional de Salud Pública, Mexico
    201. Bernhard Föger, Agency for Preventive and Social Medicine, Austria
    202. Leng Huat Foo, Universiti Sains Malaysia, Malaysia
    203. Ann-Sofie Forslund, Luleå University, Sweden
    204. Maria Forsner, Dalarna University, Sweden
    205. Stephen P Fortmann, Stanford University, United States
    206. Heba M Fouad, World Health Organization Regional Office for the Eastern Mediterranean, Egypt
    207. Damian K Francis, The University of the West Indies, Jamaica
    208. Maria do Carmo Franco, Federal University of São Paulo, Brazil
    209. Oscar H Franco, Erasmus Medical Center Rotterdam, The Netherlands
    210. Guillermo Frontera, Hospital Universitario Son Espases, Spain
    211. Flavio D Fuchs, Hospital de Clinicas de Porto Alegre, Brazil
    212. Sandra C Fuchs, Universidade Federal do Rio Grande do Sul, Brazil
    213. Yuki Fujita, Kindai University Faculty of Medicine, Japan
    214. Takuro Furusawa, Kyoto University, Japan
    215. Zbigniew Gaciong, Medical University of Warsaw, Poland
    216. Mihai Gafencu, Victor Babes University of Medicine and Pharmacy Timisoara, Romania
    217. Dickman Gareta, University of KwaZulu-Natal, South Africa
    218. Sarah P Garnett, University of Sydney, Australia
    219. Jean-Michel Gaspoz, Geneva University Hospitals, Switzerland
    220. Magda Gasull, CIBER en Epidemiología y Salud Pública, Spain
    221. Louise Gates, Australian Bureau of Statistics, Australia
    222. Johanna M Geleijnse, Wageningen University, The Netherlands
    223. Anoosheh Ghasemian, Non-Communicable Diseases Research Center, Iran
    224. Simona Giampaoli, Istituto Superiore di Sanità, Italy
    225. Francesco Gianfagna, University of Insubria, Italy
    226. Jonathan Giovannelli, Lille University Hospital, France
    227. Aleksander Giwercman, Lund University, Sweden
    228. Rebecca A Goldsmith, Nutrition Department, Ministry of Health, Israel
    229. Helen Gonçalves, Federal University of Pelotas, Brazil
    230. Marcela Gonzalez Gross, Universidad Politécnica de Madrid, Spain
    231. Juan P González Rivas, The Andes Clinic of Cardio-Metabolic Studies, Venezuela
    232. Mariano Bonet Gorbea, National Institute of Hygiene, Epidemiology and Microbiology, Cuba
    233. Frederic Gottrand, Université de Lille 2, France
    234. Sidsel Graff-Iversen, Norwegian Institute of Public Health, Norway
    235. Dušan Grafnetter, Institute for Clinical and Experimental Medicine, Czech Republic
    236. Aneta Grajda, Children's Memorial Health Institute, Poland
    237. Maria G Grammatikopoulou, Alexander Technological Educational Institute, Greece
    238. Ronald D Gregor, Dalhousie University, Canada
    239. Tomasz Grodzicki, Jagiellonian University Medical College, Poland
    240. Anders Grøntved, University of Southern Denmark, Denmark
    241. Grabriella Gruden, University of Turin, Italy
    242. Vera Grujic, University of Novi Sad, Serbia
    243. Dongfeng Gu, National Center of Cardiovascular Diseases, China
    244. Emanuela Gualdi-Russo, University of Ferrara, Italy
    245. Ong Peng Guan, Singapore Eye Research Institute, Singapore
    246. Vilmundur Gudnason, Icelandic Heart Association, Iceland
    247. Ramiro Guerrero, Universidad Icesi, Colombia
    248. Idris Guessous, Geneva University Hospitals, Switzerland
    249. Andre L Guimaraes, State University of Montes Claros, Brazil
    250. Martin C Gulliford, King's College London, United Kingdom
    251. Johanna Gunnlaugsdottir, Icelandic Heart Association, Iceland
    252. Marc Gunter, Imperial College London, United Kingdom
    253. Xiuhua Guo, Capital Medical University, China
    254. Yin Guo, Capital Medical University, China
    255. Prakash C Gupta, Healis - Sekhsaria Institute for Public Health, India
    256. Oye Gureje, University of Ibadan, Nigeria
    257. Beata Gurzkowska, Children's Memorial Health Institute, Poland
    258. Laura Gutierrez, Institute for Clinical Effectiveness and Health Policy, Argentina
    259. Felix Gutzwiller, University of Zurich, Switzerland
    260. Jytte Halkjær, Danish Cancer Society Research Centre, Denmark
    261. Ian R Hambleton, The University of the West Indies, Barbados
    262. Rebecca Hardy, University College London, United Kingdom
    263. Rachakulla Hari Kumar, Indian Council of Medical Research, India
    264. Jun Hata, Kyushu University, Japan
    265. Alison J Hayes, University of Sydney, Australia
    266. Jiang He, Tulane University, United States
    267. Marleen Elisabeth Hendriks, Academic Medical Center of University of Amsterdam, The Netherlands
    268. Leticia Hernandez Cadena, National Institute of Public Health, Mexico
    269. Sauli Herrala, Oulu University Hospital, Finland
    270. Ramin Heshmat, Chronic Diseases Research Center, Iran
    271. Ilpo Tapani Hihtaniemi, Imperial College London, United Kingdom
    272. Sai Yin Ho, University of Hong Kong, China
    273. Suzanne C Ho, The Chinese University of Hong Kong, China
    274. Michael Hobbs, University of Western Australia, Australia
    275. Albert Hofman, Erasmus Medical Center Rotterdam, The Netherlands
    276. Claudia M Hormiga, Fundación Oftalmológica de Santander, Colombia
    277. Bernardo L Horta, Universidade Federal de Pelotas, Brazil
    278. Leila Houti, University of Oran 1, Algeria
    279. Christina Howitt, The University of the West Indies, Barbados
    280. Thein Thein Htay, Independent Public Health Specialist, Myanmar
    281. Aung Soe Htet, University of Oslo, Norway
    282. Maung Maung Than Htike, International Realtions Division, Nay Pyi Taw
    283. Yonghua Hu, Peking University Health Science Center, China
    284. Abdullatif Husseini, Birzeit University, Palestine
    285. Chinh Nguyen Huu, National Institute of Nutrition, Vietnam
    286. Inge Huybrechts, International Agency for Research on Cancer, France
    287. Nahla Hwalla, American University of Beirut, Lebanon
    288. Licia Iacoviello, IRCCS Istituto Neurologico Mediterraneo Neuromed, Italy
    289. Anna G Iannone, Cardiologia di Mercato S. Severino, Italy
    290. Mohsen M Ibrahim, Cairo University, Egypt
    291. Nayu Ikeda, National Institute of Health and Nutrition, Japan
    292. M Arfan Ikram, Erasmus Medical Center Rotterdam, The Netherlands
    293. Vilma E Irazola, Institute for Clinical Effectiveness and Health Policy, Argentina
    294. Muhammad Islam, Aga Khan University, Pakistan
    295. Vanja Ivkovic, UHC Zagreb, Croatia
    296. Masanori Iwasaki, Niigata University, Japan
    297. Rod T Jackson, University of Auckland, New Zealand
    298. Jeremy M Jacobs, Hadassah University Medical Center, Israel
    299. Tazeen Jafar, Duke-NUS Graduate Medical School, Singapore
    300. Kazi M Jamil, Kuwait Institute for Scientific Research, Kuwait
    301. Konrad Jamrozik, University of Adelaide, Australia
    302. Imre Janszky, Norwegian University of Science and Technology, Norway
    303. Grazyna Jasienska, Jagiellonian University Medical College, Poland
    304. Bojan Jelakovic, University of Zagreb School of Medicine, Croatia
    305. Chao Qiang Jiang, Guangzhou 12th Hospital, China
    306. Michel Joffres, Simon Fraser University, Canada
    307. Mattias Johansson, International Agency for Research on Cancer, France
    308. Jost B Jonas, Ruprecht-Karls-University of Heidelberg, Germany
    309. Torben Jørgensen, Research Centre for Prevention and Health, Denmark
    310. Pradeep Joshi, World Health Organization Country Office, India
    311. Anne Juolevi, National Institute for Health and Welfare, Finland
    312. Gregor Jurak, University of Ljubljana, Slovenia
    313. Vesna Jureša, University of Zagreb, Croatia
    314. Rudolf Kaaks, German Cancer Research Center, Germany
    315. Anthony Kafatos, University of Crete, Greece
    316. Ofra Kalter-Leibovici, The Gertner Institute for Epidemiology and Health Policy Research, Israel
    317. Efthymios Kapantais, Hellenic Medical Association for Obesity, Greece
    318. Amir Kasaeian, Tehran University of Medical Science, Iran
    319. Joanne Katz, Johns Hopkins Bloomberg School of Public Health, United States
    320. Prabhdeep Kaur, National Institute of Epidemiology, India
    321. Maryam Kavousi, Erasmus Medical Center Rotterdam, The Netherlands
    322. Ulrich Keil, University of Münster, Germany
    323. Lital Keinan Boker, Israel Center for Disease Control, Israel
    324. Sirkka Keinänen-Kiukaanniemi, Oulu University Hospital, Finland
    325. Roya Kelishadi, Research Institute for Primordial Prevention of Non Communicable Disease, Iran
    326. Han CG Kemper, VU University Medical Center, The Netherlands
    327. Andre P Kengne, South African Medical Research Council, South Africa
    328. Mathilde Kersting, Research Institute of Child Nutrition, Germany
    329. Timothy Key, University of Oxford, United Kingdom
    330. Yousef Saleh Khader, Jordan University of Science and Technology, Jordan
    331. Davood Khalili, Shahid Beheshti University of Medical Sciences, Iran
    332. Young-Ho Khang, Seoul National University, South Korea
    333. Kay-Tee H Khaw, University of Cambridge, United Kingdom
    334. Ilse MSL Khouw, FrieslandCampina, Singapore
    335. Stefan Kiechl, Medical University Innsbruck, Austria
    336. Japhet Killewo, Muhimbili University of Health and Allied Sciences, Tanzania
    337. Jeongseon Kim, National Cancer Center, South Korea
    338. Jeannette Klimont, Statistics Austria, Austria
    339. Jurate Klumbiene, Lithuanian University of Health Sciences, Lithuania
    340. Bhawesh Koirala, B P Koirala Institute of Health Sciences, Nepal
    341. Elin Kolle, Norwegian School of Sport Sciences, Norway
    342. Patrick Kolsteren, Institute of Tropical Medicine, Belgium
    343. Paul Korrovits, Tartu University Clinics, Estonia
    344. Seppo Koskinen, National Institute for Health and Welfare, Finland
    345. Katsuyasu Kouda, Kindai University Faculty of Medicine, Japan
    346. Slawomir Koziel, Polish Academy of Sciences Anthropology Unit in Wroclaw, Poland
    347. Wolfgang Kratzer, University Hospital Ulm, Germany
    348. Steinar Krokstad, Norwegian University of Science and Technology, Norway
    349. Daan Kromhout, Wageningen University, The Netherlands
    350. Herculina S Kruger, North-West University, South Africa
    351. Ruzena Kubinova, National Institute of Public Health, Czech Republic
    352. Urho M Kujala, University of Jyväskylä, Finland
    353. Krzysztof Kula, Medical University of Lodz, Poland
    354. Zbigniew Kulaga, The Children's Memorial Health Institute, Poland
    355. R Krishna Kumar, Amrita Institute of Medical Sciences, India
    356. Pawel Kurjata, The Cardinal Wyszynski Institute of Cardiology, Poland
    357. Yadlapalli S Kusuma, All India Institute of Medical Sciences, India
    358. Kari Kuulasmaa, National Institute for Health and Welfare, Finland
    359. Catherine Kyobutungi, African Population and Health Research Center, Kenya
    360. Fatima Zahra Laamiri, Higher Institute of Nursing Professions and Technical Health, Morocco
    361. Tiina Laatikainen, National Institute for Health and Welfare, Finland
    362. Carl Lachat, Ghent University, Belgium
    363. Youcef Laid, National Institute of Public Health of Algeria, Algeria
    364. Tai Hing Lam, University of Hong Kong, China
    365. Orlando Landrove, Ministerio de Salud Pública, Cuba
    366. Vera Lanska, Institute for Clinical and Experimental Medicine, Czech Republic
    367. Georg Lappas, Sahlgrenska Academy, Sweden
    368. Bagher Larijani, Endocrinology and Metabolism Research Center, Iran
    369. Lars E Laugsand, Norwegian University of Science and Technology, Norway
    370. Avula Laxmaiah, Indian Council of Medical Research, India
    371. Khanh Le Nguyen Bao, National Institute of Nutrition, Vietnam
    372. Tuyen D Le, National Institute of Nutrition, Vietnam
    373. Catherine Leclercq, Food and Agriculture Organization, Italy
    374. Jeannette Lee, National University of Singapore, Singapore
    375. Jeonghee Lee, National Cancer Center, South Korea
    376. Terho Lehtimäki, Tampere University Hospital, Finland
    377. Rampal Lekhraj, Universiti Putra Malaysia, Malaysia
    378. Luz M León-Muñoz, Universidad Autónoma de Madrid, Spain
    379. Yanping Li, Harvard TH Chan School of Public Health, United States
    380. Christa L Lilly, West Virginia University, United States
    381. Wei-Yen Lim, National University of Singapore, Singapore
    382. M Fernanda Lima-Costa, Oswaldo Cruz Foundation Rene Rachou Research Institute, Brazil
    383. Hsien-Ho Lin, National Taiwan University, Taiwan
    384. Xu Lin, University of Chinese Academy of Sciences, China
    385. Allan Linneberg, Research Centre for Prevention and Health, Denmark
    386. Lauren Lissner, University of Gothenburg, Sweden
    387. Mieczyslaw Litwin, The Children's Memorial Health Institute, Poland
    388. Jing Liu, Beijing Anzhen Hospital, Capital Medical University
    389. Roberto Lorbeer, University Medicine Greifswald, Germany
    390. Paulo A Lotufo, University of São Paulo, Brazil
    391. José Eugenio Lozano, Consejería de Sanidad Junta de Castilla y León, Spain
    392. Dalia Luksiene, Lithuanian University of Health Sciences, Lithuania
    393. Annamari Lundqvist, National Institute for Health and Welfare, Finland
    394. Nuno Lunet, Universidade do Porto, Portugal
    395. Per Lytsy, University of Uppsala, Sweden
    396. Guansheng Ma, Peking University, China
    397. Jun Ma, Peking University, China
    398. George LL Machado-Coelho, Universidade Federal de Ouro Preto, Brazil
    399. Suka Machi, The Jikei University School of Medicine, Japan
    400. Stefania Maggi, National Research Council, Italy
    401. Dianna J ano, Baker IDI Heart and Diabetes Institute, Australia
    402. Bernard Maire, Institut de Recherche pour le Développement, France
    403. Marcia Makdisse, Hospital Israelita Albert Einstein, Brazil
    404. Reza Malekzadeh, Tehran University of Medical Sciences, Iran
    405. Rahul Malhotra, Duke-NUS Graduate Medical School, Singapore
    406. Kodavanti Mallikharjuna Rao, Indian Council of Medical Research, India
    407. Sofia Malyutina, Institute of Internal and Preventive Medicine, Russia
    408. Yannis Manios, Harokopio University, Greece
    409. Jim I Mann, University of Otago, New Zealand
    410. Enzo Manzato, University of Padova, Italy
    411. Paula Margozzini, Pontificia Universidad Católica de Chile, Chile
    412. Oonagh Markey, University of Reading, United Kingdom
    413. Pedro Marques-Vidal, Lausanne University Hospital, Switzerland
    414. Jaume Marrugat, Institut Hospital del Mar d'Investigacions Médiques, Spain
    415. Yves Martin-Prevel, Institut de Recherche pour le Développement, France
    416. Reynaldo Martorell, Emory University, United States
    417. Shariq R Masoodi, Sher-i-Kashmir Institute of Medical Sciences, India
    418. Ellisiv B Mathiesen, UiT The Arctic University of Norway, Norway
    419. Tandi E Matsha, Cape Peninsula University of Technology, South Africa
    420. Artur Mazur, University of Rzeszow, Poland
    421. Jean Claude N Mbanya, University of Yaoundé 1, Cameroon
    422. Shelly R McFarlane, The University of the West Indies, Jamaica
    423. Stephen T McGarvey, Brown University, United States
    424. Martin McKee, London School of Hygiene & Tropical Medicine, United Kingdom
    425. Stela McLachlan, University of Edinburgh, United Kingdom
    426. Rachael M McLean, University of Otago, New Zealand
    427. Breige A McNulty, University College Dublin, Ireland
    428. Safiah Md Yusof, Universiti Teknologi MARA, Malaysia
    429. Sounnia Mediene-Benchekor, University of Oran 1, Algeria
    430. Aline Meirhaeghe, Institut National de la Santé et de la Recherche Médicale, France
    431. Christa Meisinger, Helmholtz Zentrum München, Germany
    432. Ana Maria B Menezes, Universidade Federal de Pelotas, Brazil
    433. Gert BM Mensink, Robert Koch Institute, Germany
    434. Indrapal I Meshram, Indian Council of Medical Research, India
    435. Andres Metspalu, University of Tartu, Estonia
    436. Jie Mi, Capital Institute of Pediatrics, China
    437. Kim F Michaelsen, University of Copenhagen, Denmark
    438. Kairit Mikkel, University of Tartu, Estonia
    439. Jody C Miller, University of Otago, New Zealand
    440. Juan Francisco Miquel, Pontificia Universidad Católica de Chile, Chile
    441. J Jaime Miranda, Universidad Peruana Cayetano Heredia, Peru
    442. Marjeta Mišigoj-Durakovic, University of Zagreb, Croatia
    443. Mostafa K Mohamed, Ain Shams University, Egypt
    444. Kazem Mohammad, Tehran University of Medical Sciences, Iran
    445. Noushin Mohammadifard, Isfahan Cardiovascular Research Center, Iran
    446. Viswanathan Mohan, Madras Diabetes Research Foundation, India
    447. Muhammad Fadhli Mohd Yusoff, Ministry of Health Malaysia, Malaysia
    448. Drude Molbo, University of Copenhagen, Denmark
    449. Niels C Møller, University of Southern Denmark, Denmark
    450. Dénes Molnár, University of Pécs, Hungary
    451. Charles K Mondo, Mulago Hospital, Uganda
    452. Eric A Monterrubio, Instituto Nacional de Salud Pública, Mexico
    453. Kotsedi Daniel K Monyeki, University of Limpopo, South Africa
    454. Leila B Moreira, Universidade Federal do Rio Grande do Sul, Brazil
    455. Alain Morejon, University Medical Science, Cuba
    456. Luis A Moreno, Universidad de Zaragoza, Spain
    457. Karen Morgan, RCSI Dublin, Ireland
    458. Erik Lykke Mortensen, University of Copenhagen, Denmark
    459. George Moschonis, Harokopio University, Greece
    460. Malgorzata Mossakowska, International Institute of Molecular and Cell Biology, Poland
    461. Aya Mostafa, Ain Shams University, Egypt
    462. Jorge Mota, University of Porto, Portugal
    463. Mohammad Esmaeel Motlagh, Ahvaz Jundishapur University of Medical Sciences, Iran
    464. Jorge Motta, Gorgas Memorial Institute of Public Health, Panama
    465. Thet Thet Mu, Department of Public Health, Myanmar
    466. Maria Lorenza Muiesan, University of Brescia, Italy
    467. Martina Müller-Nurasyid, Helmholtz Zentrum München, Germany
    468. Neil Murphy, Imperial College London, United Kingdom
    469. Jaakko Mursu, University of Eastern Finland, Finland
    470. Elaine M Murtagh, Mary Immaculate College, Ireland
    471. Kamarul Imran Musa, Universiti Sains Malaysia, Kota Bharu
    472. Vera Musil, University of Zagreb, Croatia
    473. Gabriele Nagel, Ulm University, Germany
    474. Harunobu Nakamura, Kobe University, Japan
    475. Námešná Jana, Regional Authority of Public Health, Banska Bystrica
    476. Ei Ei K Nang, National University of Singapore, Singapore
    477. Vinay B Nangia, Suraj Eye Institute, India
    478. Martin Nankap, Helen Keller International, Cameroon
    479. Sameer Narake, Healis - Sekhsaria Institute for Public Health, India
    480. Eva Maria Navarrete Muñoz, CIBER en Epidemiología y Salud Pública, Spain
    481. William A Neal, West Virginia University, United States
    482. Ilona Nenko, Jagiellonian University Medical College, Poland
    483. Martin Neovius, Karolinska Institutet, Sweden
    484. Flavio Nervi, Pontificia Universidad Católica de Chile, Chile
    485. Hannelore K Neuhauser, Robert Koch Institute, Germany
    486. Nguyen D Nguyen, University of Pharmacy and Medicine of Ho Chi Minh City, Vietnam
    487. Quang Ngoc Nguyen, Hanoi Medical University, Vietnam
    488. Ramfis E Nieto Martínez, Universidad Centro-Occidental Lisandro Alvarado, Venezuela
    489. Guang Ning, Shanghai Jiao-Tong University School of Medicine, China
    490. Toshiharu Ninomiya, Kyushu University, Japan
    491. Sania Nishtar, Heartfile, Pakistan
    492. Marianna Noale, National Research Council, Italy
    493. Teresa Norat, Imperial College London, United Kingdom
    494. Davide Noto, University of Palermo, Italy
    495. Mohannad Al Nsour, Eastern Mediterranean Public Health Network, Jordan
    496. Dermot O'Reilly, The Queen's University of Belfast, United Kingdom
    497. Kyungwon Oh, Korea Centers for Disease Control and Prevention, South Korea
    498. Iman H Olayan, Kuwait Institute for Scientific Research, Kuwait
    499. Maria Teresa Anselmo Olinto, University of Vale do Rio dos Sinos, Brazil
    500. Maciej Oltarzewski, National Food and Nutrition Institute, Poland
    501. Mohd A Omar, Ministry of Health Malaysia, Malaysia
    502. Altan Onat, Istanbul University, Turkey
    503. Pedro Ordunez, Pan American Health Organization, United States
    504. Ana P Ortiz, University of Puerto Rico, Puerto Rico
    505. Merete Osler, Research Center for Prevention and Health, Denmark
    506. Clive Osmond, MRC Lifecourse Epidemiology Unit, United Kingdom
    507. Sergej M Ostojic, University of Novi Sad, Serbia
    508. Johanna A Otero, Fundación Oftalmológica de Santander, Colombia
    509. Kim Overvad, Aarhus University, Denmark
    510. Ellis Owusu-Dabo, Kwame Nkrumah University of Science and Technology, Ghana
    511. Fred Michel Paccaud, Institute for Social and Preventive Medicine, Switzerland
    512. Cristina Padez, University of Coimbra, Portugal
    513. Elena Pahomova, University of Latvia, Latvia
    514. Andrzej Pajak, Jagiellonian University Medical College, Poland
    515. Domenico Palli, Cancer Prevention and Research Institute, Italy
    516. Alberto Palloni, University of Wisconsin-Madison, United States
    517. Luigi Palmieri, Istituto Superiore di Sanità, Italy
    518. Songhomitra Panda-Jonas, Ruprecht-Karls-University of Heidelberg, Germany
    519. Francesco Panza, University of Bari, Italy
    520. Winsome R Parnell, University of Otago, New Zealand
    521. Mahboubeh Parsaeian, Tehran University of Medical Sciences, Iran
    522. Ivan Pecin, University of Zagreb, Croatia
    523. Mangesh S Pednekar, Healis - Sekhsaria Institute for Public Health, India
    524. Petra H Peeters, University Medical Center Utrecht, The Netherlands
    525. Sergio Viana Peixoto, Oswaldo Cruz Foundation Rene Rachou Research Institute, Brazil
    526. Markku Peltonen, National Institute for Health and Welfare, Finland
    527. Alexandre C Pereira, Heart Institute, Brazil
    528. Cynthia M Pérez, University of Puerto Rico, Puerto Rico
    529. Annette Peters, Helmholtz Zentrum München, Germany
    530. Janina Petkeviciene, Lithuanian University of Health Sciences, Lithuania
    531. Niloofar Peykari, Non-Communicable Diseases Research Center, Iran
    532. Son Thai Pham, Vietnam National Heart Institute, Vietnam
    533. Iris Pigeot, Leibniz Institute for Prevention Research and Epidemiology - BIPS, Germany
    534. Hynek Pikhart, University College London, United Kingdom
    535. Aida Pilav, Federal Ministry of Health, Bosnia and Herzegovina
    536. Lorenza Pilotto, Cardiovascular Prevention Centre, Italy
    537. Francesco Pistelli, University Hospital of Pisa, Italy
    538. Freda Pitakaka, University of New South Wales, Australia
    539. Aleksandra Piwonska, The Cardinal Wyszynski Institute of Cardiology, Poland
    540. Pedro Plans-Rubió, Public Health Agency of Catalonia, Spain
    541. Bee Koon Poh, Universiti Kebangsaan Malaysia, Malaysia
    542. Miquel Porta, Institut Hospital del Mar d'Investigacions Médiques, Spain
    543. Marileen LP Portegies, Erasmus Medical Center Rotterdam, The Netherlands
    544. Dimitrios Poulimeneas, Alexander Technological Educational Institute, Greece
    545. Rajendra Pradeepa, Madras Diabetes Research Foundation, India
    546. Mathur Prashant, Indian Council of Medical Research, India
    547. Jacqueline F Price, University of Edinburgh, United Kingdom
    548. Maria Puiu, Victor Babes University of Medicine and Pharmacy Timisoara, Romania
    549. Margus Punab Tartu, University Clinics, Estonia
    550. Radwan F Qasrawi, Al-Quds University, Palestine
    551. Mostafa Qorbani, Alborz University of Medical Sciences, Iran
    552. Tran Quoc Bao, Ministry of Health, Vietnam
    553. Ivana Radic, University of Novi Sad, Serbia
    554. Ricardas Radisauskas, Lithuanian University of Health Sciences, Lithuania
    555. Mahmudur Rahman, Institute of Epidemiology Disease Control and Research, Bangladesh
    556. Olli Raitakari, Turku University Hospital, Finland
    557. Manu Raj, Amrita Institute of Medical Sciences, India
    558. Sudha Ramachandra Rao, National Institute of Epidemiology, India
    559. Ambady Ramachandran, India Diabetes Research Foundation, India
    560. Jacqueline Ramke, University of New South Wales, Australia
    561. Rafel Ramos, Institut Universitari d’Investigació en Atenció Primària Jordi Gol, Spain
    562. Sanjay Rampal, University of Malaya, Malaysia
    563. Finn Rasmussen, Karolinska Institutet, Sweden
    564. Josep Redon, University of Valencia, Spain
    565. Paul Ferdinand M Reganit, University of the Philippines, Philippines
    566. Robespierre Ribeiro, Minas Gerais State Secretariat for Health, Brazil
    567. Elio Riboli, Imperial College London, United Kingdom
    568. Fernando Rigo, Health Center San Agustín, Spain
    569. Tobias F Rinke de Wit, PharmAccess Foundation, The Netherlands
    570. Raphael M Ritti-Dias, Hospital Israelita Albert Einstein, Brazil
    571. Juan A Rivera, Instituto Nacional de Salud Pública, Mexico
    572. Sian M Robinson, University of Southampton, United Kingdom
    573. Cynthia Robitaille, Public Health Agency of Canada, Canada
    574. Fernando Rodríguez-Artalejo, Universidad Autónoma de Madrid, Spain
    575. María del Cristo Rodriguez-Perez, Canarian Health Service, Spain
    576. Laura A Rodríguez-Villamizar, Universidad Industrial de Santander, Colombia
    577. Rosalba Rojas-Martinez, Instituto Nacional de Salud Pública, Mexico
    578. Nipa Rojroongwasinkul, Mahidol University, Thailand
    579. Dora Romaguera, CIBEROBN, Spain
    580. Kimmo Ronkainen, University of Eastern Finland, Finland
    581. Annika Rosengren, University of Gothenburg, Sweden
    582. Ian Rouse, Fiji National University, Fiji
    583. Adolfo Rubinstein, Institute for Clinical Effectiveness and Health Policy, Argentina
    584. Frank J Rühli, University of Zurich, Switzerland
    585. Ornelas Rui, University of Madeira, Portugal
    586. Blanca Sandra Ruiz-Betancourt, Instituto Mexicano del Seguro Social, Mexico
    587. Andrea RV Russo Horimoto, Heart Institute, Brazil
    588. Marcin Rutkowski, Medical University of Gdansk, Poland
    589. Charumathi Sabanayagam, Singapore Eye Research Institute, Singapore
    590. Harshpal S Sachdev, Sitaram Bhartia Institute of Science and Research, India
    591. Olfa Saidi, Faculty of medicine of Tunis, Tunisia
    592. Benoit Salanave, French Public Health Agency, France
    593. Eduardo Salazar Martinez, National Institute of Public Health, Mexico
    594. Veikko Salomaa, National Institute for Health and Welfare, Finland
    595. Jukka T Salonen, University of Helsinki, Finland
    596. Massimo Salvetti, University of Brescia, Italy
    597. Jose Sánchez-Abanto, National Institute of Health, Peru
    598. Sandjaja, Ministry of Health, Indonesia
    599. Susana Sans, Catalan Department of Health, Spain
    600. Diana A Santos, Universidade de Lisboa, Portugal
    601. Osvaldo Santos, Institute of Preventive Medicine and Public Health, Portugal
    602. Renata Nunes dos Santos, University of Sao Paulo Clinics Hospital, Brazil
    603. Rute Santos, University of Porto, Portugal
    604. Jouko L Saramies, South Karelia Social and Health Care District, Finland
    605. Luis B Sardinha, Universidade de Lisboa, Portugal
    606. Nizal Sarrafzadegan, Isfahan Cardiovascular Research Center, Iran
    607. Kai-Uwe Saum, German Cancer Research Center, Germany
    608. Savvas C Savva, Research and Education Institute of Child Health, Cyprus
    609. Marcia Scazufca, University of Sao Paulo Clinics Hospital, Brazil
    610. Angelika Schaffrath Rosario, Robert Koch Institute, Germany
    611. Herman Schargrodsky, Hospital Italiano de Buenos Aires, Argentina
    612. Anja Schienkiewitz, Robert Koch Institute, Germany
    613. Ida Maria Schmidt, Rigshospitalet, Denmark
    614. Ione J Schneider, Federal University of Santa Catarina, Brazil
    615. Constance Schultsz, Academic Medical Center of University of Amsterdam, The Netherlands
    616. Aletta E Schutte, MRC North-West University, South Africa
    617. Aye Aye Sein, Ministry of Health, Myanmar
    618. Abhijit Sen, Norwegian University of Science and Technology, Norway
    619. Idowu O Senbanjo, Lagos State University College of Medicine, Nigeria
    620. Sadaf G Sepanlou, Digestive Diseases Research Institute, Iran
    621. Svetlana A Shalnova, National Research Centre for Preventive Medicine, Russia
    622. Sanjib K Sharma, B P Koirala Institute of Health Sciences, Nepal
    623. Jonathan E Shaw, Baker IDI Heart and Diabetes Institute, Australia
    624. Kenji Shibuya, The University of Tokyo, Japan
    625. Dong Wook Shin, Seoul National University College of Medicine, South Korea
    626. Youchan Shin, Singapore Eye Research Institute, Singapore
    627. Rahman Shiri, Finnish Institute of Occupational Health, Finland
    628. Rosalynn Siantar, Singapore Eye Research Institute, Singapore
    629. Abla M Sibai, American University of Beirut, Lebanon
    630. Antonio M Silva, Federal University of Maranhao, Brazil
    631. Diego Augusto Santos Silva, Federal University of Santa Catarina, Brazil
    632. Mary Simon, India Diabetes Research Foundation, India
    633. Judith Simons, St Vincent's Hospital, Australia
    634. Leon A Simons, University of New South Wales, Australia
    635. Michael Sjostrom, Karolinska Institutet, Sweden
    636. Jolanta Slowikowska-Hilczer, Medical University of Lodz, Poland
    637. Przemyslaw Slusarczyk, International Institute of Molecular and Cell Biology, Poland
    638. Liam Smeeth, London School of Hygiene & Tropical Medicine, United Kingdom
    639. Margaret C Smith, University of Oxford, United Kingdom
    640. Marieke B Snijder, Academic Medical Center of University of Amsterdam, The Netherlands
    641. Hung-Kwan So, The Chinese University of Hong Kong, China
    642. Eugéne Sobngwi, University of Yaoundé 1, Cameroon
    643. Stefan Söderberg, Umeå University, Sweden
    644. Moesijanti YE Soekatri, Health Polytechnics Institute, Indonesia
    645. Vincenzo Solfrizzi, University of Bari, Italy
    646. Emily Sonestedt, Lund University, Sweden
    647. Yi Song, Peking University, China
    648. Thorkild IA Sørensen, University of Copenhagen, Denmark
    649. Maroje Soric, University of Zagreb, Croatia
    650. Charles Sossa Jérome, Institut Régional de Santé Publique, West Africa
    651. Aicha Soumare, University of Bordeaux, France
    652. Jan A Staessen, University of Leuven, Belgium
    653. Gregor Starc, University of Ljubljana, Slovenia
    654. Maria G Stathopoulou, INSERM, France
    655. Kaspar Staub, University of Zurich, Switzerland
    656. Bill Stavreski, Heart Foundation, Australia
    657. Jostein Steene-Johannessen, Norwegian School of Sport Sciences, Norway
    658. Peter Stehle, Bonn University, Germany
    659. Aryeh D Stein, Emory University, United States
    660. George S Stergiou, Sotiria Hospital, Greece
    661. Jochanan Stessman, Hadassah University Medical Center, Israel
    662. Jutta Stieber, Helmholtz Zentrum München, Germany
    663. Doris Stöckl, Helmholtz Zentrum München, Germany
    664. Tanja Stocks, Lund University, Sweden
    665. Jakub Stokwiszewski, National Institute of Public Health-National Institute of Hygiene, Poland
    666. Gareth Stratton, Swansea University, United Kingdom
    667. Karien Stronks, University of Amsterdam, The Netherlands
    668. Maria Wany Strufaldi, Federal University of São Paulo, Brazil
    669. Chien-An Sun, Fu Jen Catholic University, Taiwan
    670. Johan Sundström, Uppsala University, Sweden
    671. Yn-Tz Sung, The Chinese University of Hong Kong, China
    672. Jordi Sunyer, ISGlobal Centre for Research in Environmental Epidemiology, Spain
    673. Paibul Suriyawongpaisal, Mahidol University, Thailand
    674. Boyd A Swinburn, The University of Auckland, New Zealand
    675. Rody G Sy, University of the Philippines, Philippines
    676. Lucjan Szponar, National Food and Nutrition Institute, Poland
    677. E Shyong Tai, National University of Singapore, Singapore
    678. Mari-Liis Tammesoo, University of Tartu, Estonia
    679. Abdonas Tamosiunas, Lithuanian University of Health Sciences, Lithuania
    680. Line Tang, Research Centre for Prevention and Health, Denmark
    681. Xun Tang, Peking University Health Science Center, China
    682. Frank Tanser, University of KwaZulu-Natal, South Africa
    683. Yong Tao, Peking University, China
    684. Mohammed Rasoul Tarawneh, Ministry of Health, Jordan
    685. Jakob Tarp, University of Southern Denmark, Denmark
    686. Carolina B Tarqui-Mamani, National Institute of Health, Peru
    687. Anne Taylor, The University of Adelaide, Australia
    688. Félicité Tchibindat, UNICEF, Cameroon
    689. Holger Theobald, Karolinska Institutet, Sweden
    690. Lutgarde Thijs, University of Leuven, Belgium
    691. Betina H Thuesen, Research Centre for Prevention and Health, Denmark
    692. Anne Tjonneland, Danish Cancer Society Research Centre, Denmark
    693. Hanna K Tolonen, National Institute for Health and Welfare, Finland
    694. Janne S Tolstrup, University of Southern Denmark, Denmark
    695. Murat Topbas, Karadeniz Technical University, Turkey
    696. Roman Topór-Madry, Jagiellonian University Medical College, Poland
    697. Maties Torrent, IB-SALUT Area de Salut de Menorca, Spain
    698. Stefania Toselli, University of Bologna, Italy
    699. Pierre Traissac, Institut de Recherche pour le Développement, France
    700. Antonia Trichopoulou, Hellenic Health Foundation, Greece
    701. Dimitrios Trichopoulos, Harvard TH Chan School of Public Health, United States
    702. Oanh TH Trinh, University of Pharmacy and Medicine of Ho Chi Minh City, Vietnam
    703. Atul Trivedi, Government Medical College, India
    704. Lechaba Tshepo, Sefako Makgatho Health Science University, South Africa
    705. Marshall K Tulloch-Reid, The University of the West Indies, Jamaica
    706. Tomi-Pekka Tuomainen, University of Eastern Finland, Finland
    707. Jaakko Tuomilehto, Dasman Diabetes Institute, Kuwait
    708. Maria L Turley, Ministry of Health, New Zealand
    709. Per Tynelius, Karolinska Institutet, Sweden
    710. Themistoklis Tzotzas, Hellenic Medical Association for Obesity, Greece
    711. Christophe Tzourio, University of Bordeaux, France
    712. Peter Ueda, Harvard TH Chan School of Public Health, United States
    713. Flora AM Ukoli, Meharry Medical College, United States
    714. Hanno Ulmer, Medical University of Innsbruck, Austria
    715. Belgin Unal, Dokuz Eylul University, Turkey
    716. Hannu MT Uusitalo, University of Tampere Tays Eye Center, Finland
    717. Gonzalo Valdivia, Pontificia Universidad Católica de Chile, Chile
    718. Susana Vale, University of Porto, Portugal
    719. Damaskini Valvi, Harvard TH Chan School of Public Health, United States
    720. Yvonne T van der Schouw, University Medical Center Utrecht, The Netherlands
    721. Koen Van Herck, Ghent University, Belgium
    722. Hoang Van Minh, Hanoi School of Public Health, Vietnam
    723. Lenie van Rossem, University Medical Center Utrecht, The Netherlands
    724. Irene GM van Valkengoed, Academic Medical Center of University of Amsterdam, The Netherlands
    725. Dirk Vanderschueren, Katholieke Universiteit Leuven, Belgium
    726. Diego Vanuzzo, Centro di Prevenzione Cardiovascolare Udine, Italy
    727. Lars Vatten, Norwegian University of Science and Technology, Norway
    728. Tomas Vega, Consejería de Sanidad Junta de Castilla y León, Spain
    729. Gustavo Velasquez-Melendez, Universidade Federal de Minas Gerais, Brazil
    730. Giovanni Veronesi, University of Insubria, Italy
    731. WM Monique Verschuren, National Institute for Public Health and the Environment, The Netherlands
    732. Roosmarijn Verstraeten, Institute of Tropical Medicine, Belgium
    733. Cesar G Victora, Universidade Federal de Pelotas, Brazil
    734. Giovanni Viegi, Italian National Research Council, Italy
    735. Lucie Viet, National Institute for Public Health and the Environment, The Netherlands
    736. Eira Viikari-Juntura, Finnish Institute of Occupational Health, Finland
    737. Paolo Vineis, Imperial College London, United Kingdom
    738. Jesus Vioque, Universidad Miguel Hernandez, Spain
    739. Jyrki K Virtanen, University of Eastern Finland, Finland
    740. Sophie Visvikis-Siest, INSERM, France
    741. Bharathi Viswanathan, Ministry of Health, Seychelles
    742. Peter Vollenweider, Lausanne University Hospital, Switzerland
    743. Sari Voutilainen, University of Eastern Finland, Finland
    744. Ana Vrdoljak, UHC Zagreb, Croatia
    745. Martine Vrijheid, ISGlobal Centre for Research in Environmental Epidemiology, Spain
    746. Alisha N Wade, University of the Witwatersrand, South Africa
    747. Aline Wagner, University of Strasbourg, France
    748. Janette Walton, University College Cork, Ireland
    749. Wan Nazaimoon Wan Mohamud, Institute for Medical Research, Malaysia
    750. Ming-Dong Wang, Public Health Agency of Canada, Canada
    751. Qian Wang, Xinjiang Medical University, China
    752. Ya Xing Wang, Beijing Tongren Hospital, China
    753. S Goya Wannamethee, University College London, United Kingdom
    754. Nicholas Wareham, University of Cambridge, United Kingdom
    755. Deepa Weerasekera, Ministry of Health, New Zealand
    756. Peter H Whincup, St George’s, University of London
    757. Kurt Widhalm, Medical University of Vienna, Austria
    758. Indah S Widyahening, Universitas Indonesia, Indonesia
    759. Andrzej Wiecek, Medical University of Silesia, Poland
    760. Alet H Wijga, National Institute for Public Health and the Environment, The Netherlands
    761. Rainford J Wilks, The University of the West Indies, Jamaica
    762. Johann Willeit, Medical University Innsbruck, Austria
    763. Tom Wilsgaard, UiT The Arctic University of Norway, Norway
    764. Bogdan Wojtyniak, National Institute of Public Health-National Institute of Hygiene, Poland
    765. Jyh Eiin Wong, Universiti Kebangsaan Malaysia, Malaysia
    766. Tien Yin Wong, Duke-NUS Graduate Medical School, Singapore
    767. Jean Woo, The Chinese University of Hong Kong, China
    768. Mark Woodward, University of Sydney, Australia
    769. Frederick C Wu, University of Manchester, United Kingdom
    770. Jianfeng Wu, Shandong University of Traditional Chinese Medicine, China
    771. Shou Ling Wu, Kailuan General Hospital, China
    772. Haiquan Xu, Institute of Food and Nutrition Development of Ministry of Agriculture, China
    773. Liang Xu, Capital Medical University, China
    774. Uruwan Yamborisut, Mahidol University, Thailand
    775. Weili Yan, Children's Hospital of Fudan University, China
    776. Xiaoguang Yang, Chinese Center for Disease Control and Prevention, China
    777. Nazan Yardim, Ministry of Health, Turkey
    778. Xingwang Ye, University of Chinese Academy of Sciences, China
    779. Panayiotis K Yiallouros, University of Cyprus, Cyprus
    780. Akihiro Yoshihara, Niigata University, Japan
    781. Qi Sheng You, Capital Medical University, China
    782. Novie O Younger-Coleman, The University of the West Indies, Jamaica
    783. Ahmad F Yusoff, Ministry of Health Malaysia, Malaysia
    784. Ahmad A Zainuddin, Universiti Teknologi MARA, Malaysia
    785. Sabina Zambon, University of Padova, Italy
    786. Tomasz Zdrojewski, Medical University of Gdansk, Poland
    787. Yi Zeng, Duke University, United States
    788. Dong Zhao, Beijing Anzhen Hospital, Capital Medical University
    789. Wenhua Zhao, Chinese Center for Disease Control and Prevention, China
    790. Yingfeng Zheng, Singapore Eye Research Institute, Singapore
    791. Maigeng Zhou, Chinese Center for Disease Control and Prevention, China
    792. Dan Zhu, Inner Mongolia Medical University, China
    793. Esther Zimmermann, Bispebjerg and Frederiksberg Hospitals, Denmark
    794. Julio Zuñiga Cisneros, Gorgas Memorial Institute of Public Health, Panama

Funding

Grand Challenges Canada

  • Majid Ezzati

Wellcome Trust (101506/Z/13/Z)

  • Majid Ezzati

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Acknowledgements

Acknowledgements

ME was awarded funding to carry out the research from the Wellcome Trust and Grand Challenges Canada. We thank Christina Banks, Quentin Hennocq, Dheeya Rizmie, and Yasaman Vali for assistance with data extraction. We thank WHO country and regional offices and World Heart Federation for support in data identification and access.

NCD Risk Factor Collaboration (NCD-RisC)

Pooled Analysis and Writing (* equal contribution)

James Bentham (Imperial College London, UK)*; Mariachiara Di Cesare (Middlesex University, UK; Imperial College London, UK)*; Gretchen A Stevens (World Health Organization, Switzerland); Bin Zhou (Imperial College London, UK); Honor Bixby (Imperial College London, UK); Melanie Cowan (World Health Organization, Switzerland); Léa Fortunato (Imperial College London, UK); James E Bennett (Imperial College London, UK); Goodarz Danaei (Harvard T.H. Chan School of Public Health, USA); Kaveh Hajifathalian (Harvard T.H. Chan School of Public Health, USA); Yuan Lu (Harvard T.H. Chan School of Public Health, USA); Leanne M Riley (World Health Organization, Switzerland); Avula Laxmaiah (Indian Council of Medical Research, India); Vasilis Kontis (Imperial College London, UK); Christopher J Paciorek (University of California, Berkeley, USA); Elio Riboli (Imperial College London, UK); Majid Ezzati (Imperial College London, UK; WHO Collaborating Centre on NCD Surveillance and Epidemiology, UK).

Country and Regional Data (* equal contribution; listed alphabetically)

Ziad A Abdeen (Al-Quds University, Palestine)*; Zargar Abdul Hamid (Center for Diabetes and Endocrine Care, India)*; Niveen M Abu-Rmeileh (Birzeit University, Palestine)*; Benjamin Acosta-Cazares (Instituto Mexicano del Seguro Social, Mexico)*; Robert Adams (The University of Adelaide, Australia)*; Wichai Aekplakorn (Mahidol University, Thailand)*; Carlos A Aguilar-Salinas (Instituto Nacional de Ciencias Médicas y Nutricion, Mexico)*; Charles Agyemang (University of Amsterdam, The Netherlands)*; Alireza Ahmadvand (Non-Communicable Diseases Research Center, Iran)*; Wolfgang Ahrens (Leibniz Institute for Prevention Research and Epidemiology - BIPS, Germany)*; Hazzaa M Al-Hazzaa (King Saud University, Saudi Arabia)*; Amani Rashed Al-Othman (Kuwait Institute for Scientific Research, Kuwait)*; Rajaa Al Raddadi (Ministry of Health, Saudi Arabia)*; Mohamed M Ali (World Health Organization Regional Office for the Eastern Mediterranean, Egypt)*; Ala'a Alkerwi (Luxembourg Institute of Health, Luxembourg)*; Mar Alvarez-Pedrerol (ISGlobal Centre for Research in Environmental Epidemiology, Spain)*; Eman Aly (World Health Organization Regional Office for the Eastern Mediterranean, Egypt)*; Philippe Amouyel (Lille University and Hospital, France)*; Antoinette Amuzu (London School of Hygiene & Tropical Medicine, UK)*; Lars Bo Andersen (Sogn and Fjordane University College, Norway)*; Sigmund A Anderssen (Norwegian School of Sport Sciences, Norway)*; Ranjit Mohan Anjana (Madras Diabetes Research Foundation, India)*; Hajer Aounallah-Skhiri (National Institute of Public Health, Tunisia)*; Inger Ariansen (Norwegian Institute of Public Health, Norway)*; Tahir Aris (Ministry of Health Malaysia, Malaysia)*; Nimmathota Arlappa (Indian Council of Medical Research, India)*; Dominique Arveiler (University of Strasbourg and Strasbourg University Hospital, France)*; Felix K Assah (University of Yaoundé 1, Cameroon)*; Mária Avdicová (Regional Authority of Public Health, Banska Bystrica, Slovakia)*; Fereidoun Azizi (Shahid Beheshti University of Medical Sciences, Iran)*; Bontha V Babu (Indian Council of Medical Research, India)*; Suhad Bahijri (King Abdulaziz University, Saudi Arabia)*; Nagalla Balakrishna (Indian Council of Medical Research, India)*; Piotr Bandosz (Medical University of Gdansk, Poland)*; José R Banegas (Universidad Autónoma de Madrid, Spain)*; Carlo M Barbagallo (University of Palermo, Italy)*; Alberto Barceló (Pan American Health Organization, USA)*; Amina Barkat (Mohammed V University de Rabat, Morocco)*; Mauro V Barros (University of Pernambuco, Brazil)*; Iqbal Bata (Dalhousie University, Canada)*; Anwar M Batieha (Jordan University of Science and Technology, Jordan)*; Rosangela L Batista (Federal University of Maranhao, Brazil)*; Louise A Baur (University of Sydney, Australia)*; Robert Beaglehole (University of Auckland, New Zealand)*; Habiba Ben Romdhane (University Tunis El Manar, Tunisia)*; Mikhail Benet (University Medical Science, Cuba)*; James E Bennett (Imperial College London, UK)*; Antonio Bernabe-Ortiz (Universidad Peruana Cayetano Heredia, Peru)*; Gailute Bernotiene (Lithuanian University of Health Sciences, Lithuania)*; Heloisa Bettiol (University of São Paulo, Brazil)*; Aroor Bhagyalaxmi (B. J. Medical College, India)*; Sumit Bharadwaj (Chirayu Medical College, India)*; Santosh K Bhargava (Sunder Lal Jain Hospital, India)*; Zaid Bhatti (The Aga Khan University, Pakistan)*; Zulfiqar A Bhutta (The Hospital for Sick Children, Canada; The Aga Khan University, Pakistan)*; Hongsheng Bi (Shandong University of Traditional Chinese Medicine, China)*; Yufang Bi (Shanghai Jiao-Tong University School of Medicine, China)*; Peter Bjerregaard (University of Southern Denmark, Denmark; University of Greenland, Greenland)*; Espen Bjertness (University of Oslo, Norway)*; Marius B Bjertness (University of Oslo, Norway)*; Cecilia Björkelund (University of Gothenburg, Sweden)*; Anneke Blokstra (National Institute for Public Health and the Environment, The Netherlands)*; Simona Bo (University of Turin, Italy)*; Martin Bobak (University College London, UK)*; Lynne M Boddy (Liverpool John Moores University, UK)*; Bernhard O Boehm (Nanyang Technological University, Singapore)*; Heiner Boeing (German Institute of Human Nutrition, Germany)*; Carlos P Boissonnet (CEMIC, Argentina)*; Vanina Bongard (Toulouse University School of Medicine, France)*; Pascal Bovet (Ministry of Health, Seychelles; University of Lausanne, Switzerland)*; Lutgart Braeckman (Ghent University, Belgium)*; Marjolijn CE Bragt (FrieslandCampina, Singapore)*; Imperia Brajkovich (Universidad Central de Venezuela, Venezuela)*; Francesco Branca (World Health Organization, Switzerland)*; Juergen Breckenkamp (Bielefeld University, Germany)*; Hermann Brenner (German Cancer Research Center, Germany)*; Lizzy M Brewster (University of Amsterdam, The Netherlands)*; Garry R Brian (The Fred Hollows Foundation New Zealand, New Zealand)*; Graziella Bruno (University of Turin, Italy)*; H.B(as) Bueno-de-Mesquita (National Institute for Public Health and the Environment, The Netherlands)*; Anna Bugge (University of Southern Denmark, Denmark)*; Con Burns (Cork Institute of Technology, Ireland)*; Antonio Cabrera de León (Universidad de La Laguna, Spain)*; Joseph Cacciottolo (University of Malta, Malta)*; Tilema Cama (Ministry of Health, Tonga)*; Christine Cameron (Canadian Fitness and Lifestyle Research Institute, Canada)*; José Camolas (Hospital Santa Maria, CHLN, Portugal)*; Günay Can (Istanbul University, Turkey)*; Ana Paula C Cândido (Universidade Federal de Juiz de Fora, Brazil)*; Vincenzo Capuano (Cardiologia di Mercato S. Severino, Italy)*; Viviane C Cardoso (University of São Paulo, Brazil)*; Axel C Carlsson (Karolinska Institutet, Sweden)*; Maria J Carvalho (University of Porto, Portugal)*; Felipe F Casanueva (Santiago de Compostela University, Spain)*; Juan-Pablo Casas (University College London, UK)*; Carmelo A Caserta (Associazione Calabrese di Epatologia, Italy)*; Snehalatha Chamukuttan (India Diabetes Research Foundation, India)*; Angelique W Chan (Duke-NUS Graduate Medical School, Singapore)*; Queenie Chan (Imperial College London, UK)*; Himanshu K Chaturvedi (National Institute of Medical Statistics, India)*; Nishi Chaturvedi (University College London, UK)*; Chien-Jen Chen (Academia Sinica, Taiwan)*; Fangfang Chen (Capital Institute of Pediatrics, China)*; Huashuai Chen (Duke University, USA)*; Shuohua Chen (Kailuan General Hospital, China)*; Zhengming Chen (University of Oxford, UK)*; Ching-Yu Cheng (Duke-NUS Graduate Medical School, Singapore)*; Angela Chetrit (The Gertner Institute for Epidemiology and Health Policy Research, Israel)*; Arnaud Chiolero (Lausanne University Hospital, Switzerland)*; Shu-Ti Chiou (Ministry of Health and Welfare, Taiwan)*; Adela Chirita-Emandi (Victor Babes University of Medicine and Pharmacy Timisoara, Romania)*; Belong Cho (Seoul National University College of Medicine, South Korea)*; Yumi Cho (Korea Centers for Disease Control and Prevention, South Korea)*; Kaare Christensen (University of Southern Denmark, Denmark)*; Jerzy Chudek (Medical University of Silesia, Poland)*; Renata Cifkova (Charles University in Prague, Czech Republic)*; Frank Claessens (Katholieke Universiteit Leuven, Belgium)*; Els Clays (Ghent University, Belgium)*; Hans Concin (Agency for Preventive and Social Medicine, Austria)*; Cyrus Cooper (University of Southampton, UK)*; Rachel Cooper (University College London, UK)*; Tara C Coppinger (Cork Institute of Technology, Ireland)*; Simona Costanzo (IRCCS Istituto Neurologico Mediterraneo Neuromed, Italy)*; Dominique Cottel (Institut Pasteur de Lille, France)*; Chris Cowell (Westmead University of Sydney, Australia)*; Cora L Craig (Canadian Fitness and Lifestyle Research Institute, Canada)*; Ana B Crujeiras (CIBEROBN, Spain)*; Graziella D'Arrigo (National Council of Research, Italy)*; Eleonora d'Orsi (Federal University of Santa Catarina, Brazil)*; Jean Dallongeville (Institut Pasteur de Lille, France)*; Albertino Damasceno (Eduardo Mondlane University, Mozambique)*; Camilla T Damsgaard (University of Copenhagen, Denmark)*; Goodarz Danaei (Harvard TH Chan School of Public Health, USA)*; Rachel Dankner (The Gertner Institute for Epidemiology and Health Policy Research, Israel)*; Luc Dauchet (Lille University Hospital, France)*; Guy De Backer (Ghent University, Belgium)*; Dirk De Bacquer (Ghent University, Belgium)*; Giovanni de Gaetano (IRCCS Istituto Neurologico Mediterraneo Neuromed, Italy)*; Stefaan De Henauw (Ghent University, Belgium)*; Delphine De Smedt (Ghent University, Belgium)*; Mohan Deepa (Madras Diabetes Research Foundation, India)*; Alexander D Deev (National Research Centre for Preventive Medicine, Russia)*; Abbas Dehghan (Erasmus Medical Center Rotterdam, The Netherlands)*; Hélène Delisle (University of Montreal, Canada)*; Francis Delpeuch (Institut de Recherche pour le Développement, France)*; Valérie Deschamps (French Public Health Agency, France)*; Klodian Dhana (Erasmus Medical Center Rotterdam, The Netherlands)*; Augusto F Di Castelnuovo (IRCCS Istituto Neurologico Mediterraneo Neuromed, Italy)*; Juvenal Soares Dias-da-Costa (Universidade do Vale do Rio dos Sinos, Brazil)*; Alejandro Diaz (National Council of Scientific and Technical Research, Argentina)*; Shirin Djalalinia (Non-Communicable Diseases Research Center, Iran)*; Ha TP Do (National Institute of Nutrition, Vietnam)*; Annette J Dobson (University of Queensland, Australia)*; Chiara Donfrancesco (Istituto Superiore di Sanità, Italy)*; Silvana P Donoso (Universidad de Cuenca, Ecuador)*; Angela Döring (Helmholtz Zentrum München, Germany)*; Kouamelan Doua (Ministère de la Santé et de la Lutte Contre le Sida, Côte d’Ivoire)*; Wojciech Drygas (The Cardinal Wyszynski Institute of Cardiology, Poland)*; Vilnis Dzerve (University of Latvia, Latvia)*; Eruke E Egbagbe (University of Benin, Nigeria)*; Robert Eggertsen (University of Gothenburg, Sweden)*; Ulf Ekelund (Norwegian School of Sport Sciences, Norway)*; Jalila El Ati (National Institute of Nutrition and Food Technology, Tunisia)*; Paul Elliott (Imperial College London, UK)*; Reina Engle-Stone (University of California Davis, USA)*; Rajiv T Erasmus (University of Stellenbosch, South Africa)*; Cihangir Erem (Karadeniz Technical University, Turkey)*; Louise Eriksen (University of Southern Denmark, Denmark)*; Jorge Escobedo-de la Peña (Instituto Mexicano del Seguro Social, Mexico)*; Alun Evans (The Queen's University of Belfast, UK)*; David Faeh (University of Zurich, Switzerland)*; Caroline H Fall (University of Southampton, UK)*; Farshad Farzadfar (Tehran University of Medical Sciences, Iran)*; Francisco J Felix-Redondo (Centro de Salud Villanueva Norte, Spain)*; Trevor S Ferguson (The University of the West Indies, Jamaica)*; Daniel Fernández-Bergés (Hospital Don Benito-Villanueva de la Serena, Spain)*; Daniel Ferrante (Ministry of Health, Argentina)*; Marika Ferrari (Council for Agricultural Research and Economics, Italy)*; Catterina Ferreccio (Pontificia Universidad Católica de Chile, Chile)*; Jean Ferrieres (Toulouse University School of Medicine, France)*; Joseph D Finn (University of Manchester, UK)*; Krista Fischer (University of Tartu, Estonia)*; Eric Monterubio Flores (Instituto Nacional de Salud Pública, Mexico)*; Bernhard Föger (Agency for Preventive and Social Medicine, Austria)*; Leng Huat Foo (Universiti Sains Malaysia, Malaysia)*; Ann-Sofie Forslund (Luleå University, Sweden)*; Maria Forsner (Dalarna University, Sweden)*; Stephen P Fortmann (Stanford University, USA)*; Heba M Fouad (World Health Organization Regional Office for the Eastern Mediterranean, Egypt)*; Damian K Francis (The University of the West Indies, Jamaica)*; Maria do Carmo Franco (Federal University of São Paulo, Brazil)*; Oscar H Franco (Erasmus Medical Center Rotterdam, The Netherlands)*; Guillermo Frontera (Hospital Universitario Son Espases, Spain)*; Flavio D Fuchs (Hospital de Clinicas de Porto Alegre, Brazil)*; Sandra C Fuchs (Universidade Federal do Rio Grande do Sul, Brazil)*; Yuki Fujita (Kindai University Faculty of Medicine, Japan)*; Takuro Furusawa (Kyoto University, Japan)*; Zbigniew Gaciong (Medical University of Warsaw, Poland)*; Mihai Gafencu (Victor Babes University of Medicine and Pharmacy Timisoara, Romania)*; Dickman Gareta (University of KwaZulu-Natal, South Africa)*; Sarah P Garnett (University of Sydney, Australia)*; Jean-Michel Gaspoz (Geneva University Hospitals, Switzerland)*; Magda Gasull (CIBER en Epidemiología y Salud Pública, Spain)*; Louise Gates (Australian Bureau of Statistics, Australia)*; Johanna M Geleijnse (Wageningen University, The Netherlands)*; Anoosheh Ghasemian (Non-Communicable Diseases Research Center, Iran)*; Simona Giampaoli (Istituto Superiore di Sanità, Italy)*; Francesco Gianfagna (University of Insubria, Italy)*; Jonathan Giovannelli (Lille University Hospital, France)*; Aleksander Giwercman (Lund University, Sweden)*; Rebecca A Goldsmith (Nutrition Department, Ministry of Health, Israel)*; Helen Gonçalves (Federal University of Pelotas, Brazil)*; Marcela Gonzalez Gross (Universidad Politécnica de Madrid, Spain)*; Juan P González Rivas (The Andes Clinic of Cardio-Metabolic Studies, Venezuela)*; Mariano Bonet Gorbea (National Institute of Hygiene, Epidemiology and Microbiology, Cuba)*; Frederic Gottrand (Université de Lille 2, France)*; Sidsel Graff-Iversen (Norwegian Institute of Public Health, Norway)*; Dušan Grafnetter (Institute for Clinical and Experimental Medicine, Czech Republic)*; Aneta Grajda (Children's Memorial Health Institute, Poland)*; Maria G Grammatikopoulou (Alexander Technological Educational Institute, Greece)*; Ronald D Gregor (Dalhousie University, Canada)*; Tomasz Grodzicki (Jagiellonian University Medical College, Poland)*; Anders Grøntved (University of Southern Denmark, Denmark)*; Grabriella Gruden (University of Turin, Italy)*; Vera Grujic (University of Novi Sad, Serbia)*; Dongfeng Gu (National Center of Cardiovascular Diseases, China)*; Emanuela Gualdi-Russo (University of Ferrara, Italy)*; Ong Peng Guan (Singapore Eye Research Institute, Singapore)*; Vilmundur Gudnason (Icelandic Heart Association, Iceland)*; Ramiro Guerrero (Universidad Icesi, Colombia)*; Idris Guessous (Geneva University Hospitals, Switzerland)*; Andre L Guimaraes (State University of Montes Claros, Brazil)*; Martin C Gulliford (King's College London, UK)*; Johanna Gunnlaugsdottir (Icelandic Heart Association, Iceland)*; Marc Gunter (Imperial College London, UK)*; Xiuhua Guo (Capital Medical University, China)*; Yin Guo (Capital Medical University, China)*; Prakash C Gupta (Healis - Sekhsaria Institute for Public Health, India)*; Oye Gureje (University of Ibadan, Nigeria)*; Beata Gurzkowska (Children's Memorial Health Institute, Poland)*; Laura Gutierrez (Institute for Clinical Effectiveness and Health Policy, Argentina)*; Felix Gutzwiller (University of Zurich, Switzerland)*; Jytte Halkjær (Danish Cancer Society Research Centre, Denmark)*; Ian R Hambleton (The University of the West Indies, Barbados)*; Rebecca Hardy (University College London, UK)*; Rachakulla Hari Kumar (Indian Council of Medical Research, India)*; Jun Hata (Kyushu University, Japan)*; Alison J Hayes (University of Sydney, Australia)*; Jiang He (Tulane University, USA)*; Marleen Elisabeth Hendriks (Academic Medical Center of University of Amsterdam, The Netherlands)*; Leticia Hernandez Cadena (National Institute of Public Health, Mexico)*; Sauli Herrala (Oulu University Hospital, Finland)*; Ramin Heshmat (Chronic Diseases Research Center, Iran)*; Ilpo Tapani Hihtaniemi (Imperial College London, UK)*; Sai Yin Ho (University of Hong Kong, China), Suzanne C Ho (The Chinese University of Hong Kong, China)*; Michael Hobbs (University of Western Australia, Australia)*; Albert Hofman (Erasmus Medical Center Rotterdam, The Netherlands)*; Claudia M Hormiga (Fundación Oftalmológica de Santander, Colombia)*; Bernardo L Horta (Universidade Federal de Pelotas, Brazil)*; Leila Houti (University of Oran 1, Algeria)*; Christina Howitt (The University of the West Indies, Barbados)*; Thein Thein Htay (Independent Public Health Specialist, Myanmar)*; Aung Soe Htet (University of Oslo, Norway)*; Maung Maung Than Htike (International Realtions Division, Nay Pyi Taw)*; Yonghua Hu (Peking University Health Science Center, China)*; Abdullatif Husseini (Birzeit University, Palestine)*; Chinh Nguyen Huu (National Institute of Nutrition, Vietnam)*; Inge Huybrechts (International Agency for Research on Cancer, France)*; Nahla Hwalla (American University of Beirut, Lebanon)*; Licia Iacoviello (IRCCS Istituto Neurologico Mediterraneo Neuromed, Italy)*; Anna G Iannone (Cardiologia di Mercato S. Severino, Italy)*; Mohsen M Ibrahim (Cairo University, Egypt)*; Nayu Ikeda (National Institute of Health and Nutrition, Japan)*; M Arfan Ikram (Erasmus Medical Center Rotterdam, The Netherlands)*; Vilma E Irazola (Institute for Clinical Effectiveness and Health Policy, Argentina)*; Muhammad Islam (Aga Khan University, Pakistan)*; Vanja Ivkovic (UHC Zagreb, Croatia)*; Masanori Iwasaki (Niigata University, Japan)*; Rod T Jackson (University of Auckland, New Zealand)*; Jeremy M Jacobs (Hadassah University Medical Center, Israel)*; Tazeen Jafar (Duke-NUS Graduate Medical School, Singapore)*; Kazi M Jamil (Kuwait Institute for Scientific Research, Kuwait)*; Konrad Jamrozik (University of Adelaide, Australia; deceased)*; Imre Janszky (Norwegian University of Science and Technology, Norway)*; Grazyna Jasienska (Jagiellonian University Medical College, Poland)*; Bojan Jelakovic (University of Zagreb School of Medicine, Croatia)*; Chao Qiang Jiang (Guangzhou 12th Hospital, China)*; Michel Joffres (Simon Fraser University, Canada)*; Mattias Johansson (International Agency for Research on Cancer, France)*; Jost B Jonas (Ruprecht-Karls-University of Heidelberg, Germany)*; Torben Jørgensen (Research Centre for Prevention and Health, Denmark)*; Pradeep Joshi (World Health Organization Country Office, India)*; Anne Juolevi (National Institute for Health and Welfare, Finland)*; Gregor Jurak (University of Ljubljana, Slovenia)*; Vesna Jureša (University of Zagreb, Croatia)*; Rudolf Kaaks (German Cancer Research Center, Germany)*; Anthony Kafatos (University of Crete, Greece)*; Ofra Kalter-Leibovici (The Gertner Institute for Epidemiology and Health Policy Research, Israel)*; Efthymios Kapantais (Hellenic Medical Association for Obesity, Greece)*; Amir Kasaeian (Tehran University of Medical Science, Iran)*; Joanne Katz (Johns Hopkins Bloomberg School of Public Health, USA)*; Prabhdeep Kaur (National Institute of Epidemiology, India)*; Maryam Kavousi (Erasmus Medical Center Rotterdam, The Netherlands)*; Ulrich Keil (University of Münster, Germany)*; Lital Keinan Boker ( Israel Center for Disease Control, Israel)*; Sirkka Keinänen-Kiukaanniemi (Oulu University Hospital, Finland)*; Roya Kelishadi (Research Institute for Primordial Prevention of Non Communicable Disease, Iran)*; Han CG Kemper (VU University Medical Center, The Netherlands)*; Andre P Kengne (South African Medical Research Council, South Africa)*; Mathilde Kersting (Research Institute of Child Nutrition, Germany)*; Timothy Key (University of Oxford, UK)*; Yousef Saleh Khader (Jordan University of Science and Technology, Jordan)*; Davood Khalili (Shahid Beheshti University of Medical Sciences, Iran)*; Young-Ho Khang (Seoul National University, South Korea)*; Kay-Tee H Khaw (University of Cambridge, UK)*; Ilse MSL Khouw (FrieslandCampina, Singapore)*; Stefan Kiechl (Medical University Innsbruck, Austria)*; Japhet Killewo (Muhimbili University of Health and Allied Sciences, Tanzania)*; Jeongseon Kim (National Cancer Center, South Korea), Jeannette Klimont (Statistics Austria, Austria)*; Jurate Klumbiene (Lithuanian University of Health Sciences, Lithuania)*; Bhawesh Koirala (B P Koirala Institute of Health Sciences, Nepal)*; Elin Kolle (Norwegian School of Sport Sciences, Norway)*; Patrick Kolsteren (Institute of Tropical Medicine, Belgium)*; Paul Korrovits (Tartu University Clinics, Estonia)*; Seppo Koskinen (National Institute for Health and Welfare, Finland)*; Katsuyasu Kouda (Kindai University Faculty of Medicine, Japan)*; Slawomir Koziel (Polish Academy of Sciences Anthropology Unit in Wroclaw, Poland)*; Wolfgang Kratzer (University Hospital Ulm, Germany)*; Steinar Krokstad (Norwegian University of Science and Technology, Norway)*; Daan Kromhout (Wageningen University, The Netherlands)*; Herculina S Kruger (North-West University, South Africa)*; Ruzena Kubinova (National Institute of Public Health, Czech Republic)*; Urho M Kujala (University of Jyväskylä, Finland)*; Krzysztof Kula (Medical University of Lodz, Poland)*; Zbigniew Kulaga (The Children's Memorial Health Institute, Poland)*; R Krishna Kumar (Amrita Institute of Medical Sciences, India)*; Pawel Kurjata (The Cardinal Wyszynski Institute of Cardiology, Poland)*; Yadlapalli S Kusuma (All India Institute of Medical Sciences, India)*; Kari Kuulasmaa (National Institute for Health and Welfare, Finland)*; Catherine Kyobutungi (African Population and Health Research Center, Kenya)*; Fatima Zahra Laamiri (Higher Institute of Nursing Professions and Technical Health, Morocco)*; Tiina Laatikainen (National Institute for Health and Welfare, Finland)*; Carl Lachat (Ghent University, Belgium)*; Youcef Laid (National Institute of Public Health of Algeria, Algeria)*; Tai Hing Lam (University of Hong Kong, China)*; Orlando Landrove (Ministerio de Salud Pública, Cuba)*; Vera Lanska (Institute for Clinical and Experimental Medicine, Czech Republic)*; Georg Lappas (Sahlgrenska Academy, Sweden)*; Bagher Larijani (Endocrinology and Metabolism Research Center, Iran)*; Lars E Laugsand (Norwegian University of Science and Technology, Norway)*; Avula Laxmaiah (Indian Council of Medical Research, India)*; Khanh Le Nguyen Bao (National Institute of Nutrition, Vietnam)*; Tuyen D Le (National Institute of Nutrition, Vietnam)*; Catherine Leclercq (Food and Agriculture Organization, Italy)*; Jeannette Lee (National University of Singapore, Singapore)*; Jeonghee Lee (National Cancer Center, South Korea)*; Terho Lehtimäki (Tampere University Hospital, Finland)*; Rampal Lekhraj (Universiti Putra Malaysia, Malaysia)*; Luz M León-Muñoz (Universidad Autónoma de Madrid, Spain)*; Yanping Li (Harvard TH Chan School of Public Health, USA)*; Christa L Lilly (West Virginia University, USA)*; Wei-Yen Lim (National University of Singapore, Singapore)*; M Fernanda Lima-Costa (Oswaldo Cruz Foundation Rene Rachou Research Institute, Brazil)*; Hsien-Ho Lin (National Taiwan University, Taiwan)*; Xu Lin (University of Chinese Academy of Sciences, China)*; Allan Linneberg (Research Centre for Prevention and Health, Denmark)*; Lauren Lissner (University of Gothenburg, Sweden)*; Mieczyslaw Litwin (The Children's Memorial Health Institute, Poland)*; Jing Liu (Beijing Anzhen Hospital, Capital Medical University, China)*; Roberto Lorbeer (University Medicine Greifswald, Germany)*; Paulo A Lotufo (University of São Paulo, Brazil)*; José Eugenio Lozano (Consejería de Sanidad Junta de Castilla y León, Spain)*; Dalia Luksiene (Lithuanian University of Health Sciences, Lithuania)*; Annamari Lundqvist (National Institute for Health and Welfare, Finland)*; Nuno Lunet (Universidade do Porto, Portugal)*; Per Lytsy (University of Uppsala, Sweden)*; Guansheng Ma (Peking University, China)*; Jun Ma (Peking University, China)*; George LL Machado-Coelho (Universidade Federal de Ouro Preto, Brazil)*; Suka Machi (The Jikei University School of Medicine, Japan)*; Stefania Maggi (National Research Council, Italy)*; Dianna J Magliano (Baker IDI Heart and Diabetes Institute, Australia)*; Bernard Maire (Institut de Recherche pour le Développement, France)*; Marcia Makdisse (Hospital Israelita Albert Einstein, Brazil)*; Reza Malekzadeh (Tehran University of Medical Sciences, Iran)*; Rahul Malhotra (Duke-NUS Graduate Medical School, Singapore)*; Kodavanti Mallikharjuna Rao (Indian Council of Medical Research, India)*; Sofia Malyutina (Institute of Internal and Preventive Medicine, Russia)*; Yannis Manios (Harokopio University, Greece)*; Jim I Mann (University of Otago, New Zealand)*; Enzo Manzato (University of Padova, Italy)*; Paula Margozzini (Pontificia Universidad Católica de Chile, Chile)*; Oonagh Markey (University of Reading, UK)*; Pedro Marques-Vidal (Lausanne University Hospital, Switzerland)*; Jaume Marrugat (Institut Hospital del Mar d'Investigacions Mèdiques, Spain)*; Yves Martin-Prevel (Institut de Recherche pour le Développement, France)*; Reynaldo Martorell (Emory University, USA)*; Shariq R Masoodi (Sher-i-Kashmir Institute of Medical Sciences, India)*; Ellisiv B Mathiesen (UiT The Arctic University of Norway, Norway)*; Tandi E Matsha (Cape Peninsula University of Technology, South Africa)*; Artur Mazur (University of Rzeszow, Poland)*; Jean Claude N Mbanya (University of Yaoundé 1, Cameroon)*; Shelly R McFarlane (The University of the West Indies, Jamaica)*; Stephen T McGarvey (Brown University, USA)*; Martin McKee (London School of Hygiene & Tropical Medicine, UK)*; Stela McLachlan (University of Edinburgh, UK)*; Rachael M McLean (University of Otago, New Zealand)*; Breige A McNulty (University College Dublin, Ireland)*; Safiah Md Yusof (Universiti Teknologi MARA, Malaysia)*; Sounnia Mediene-Benchekor (University of Oran 1, Algeria)*; Aline Meirhaeghe (Institut National de la Santé et de la Recherche Médicale, France)*; Christa Meisinger (Helmholtz Zentrum München, Germany)*; Ana Maria B Menezes (Universidade Federal de Pelotas, Brazil)*; Gert BM Mensink (Robert Koch Institute, Germany)*; Indrapal I Meshram (Indian Council of Medical Research, India)*; Andres Metspalu (University of Tartu, Estonia)*; Jie Mi (Capital Institute of Pediatrics, China)*; Kim F Michaelsen (University of Copenhagen, Denmark)*; Kairit Mikkel (University of Tartu, Estonia)*; Jody C Miller (University of Otago, New Zealand)*; Juan Francisco Miquel (Pontificia Universidad Católica de Chile, Chile)*; J Jaime Miranda (Universidad Peruana Cayetano Heredia, Peru)*; Marjeta Mišigoj-Durakovic (University of Zagreb, Croatia)*; Mostafa K Mohamed (Ain Shams University, Egypt)*; Kazem Mohammad (Tehran University of Medical Sciences, Iran)*; Noushin Mohammadifard (Isfahan Cardiovascular Research Center, Iran)*; Viswanathan Mohan (Madras Diabetes Research Foundation, India)*; Muhammad Fadhli Mohd Yusoff (Ministry of Health Malaysia, Malaysia)*; Drude Molbo (University of Copenhagen, Denmark)*; Niels C Møller (University of Southern Denmark, Denmark)*; Dénes Molnár (University of Pécs, Hungary)*; Charles K Mondo (Mulago Hospital, Uganda)*; Eric A Monterrubio (Instituto Nacional de Salud Pública, Mexico)*; Kotsedi Daniel K Monyeki (University of Limpopo, South Africa)*; Leila B Moreira (Universidade Federal do Rio Grande do Sul, Brazil)*; Alain Morejon (University Medical Science, Cuba)*; Luis A Moreno (Universidad de Zaragoza, Spain)*; Karen Morgan (RCSI Dublin, Ireland)*; Erik Lykke Mortensen (University of Copenhagen, Denmark)*; George Moschonis (Harokopio University, Greece)*; Malgorzata Mossakowska (International Institute of Molecular and Cell Biology, Poland)*; Aya Mostafa (Ain Shams University, Egypt)*; Jorge Mota (University of Porto, Portugal)*; Mohammad Esmaeel Motlagh (Ahvaz Jundishapur University of Medical Sciences, Iran)*; Jorge Motta (Gorgas Memorial Institute of Public Health, Panama)*; Thet Thet Mu (Department of Public Health, Myanmar)*; Maria Lorenza Muiesan (University of Brescia, Italy)*; Martina Müller-Nurasyid (Helmholtz Zentrum München, Germany)*; Neil Murphy (Imperial College London, UK)*; Jaakko Mursu (University of Eastern Finland, Finland)*; Elaine M Murtagh (Mary Immaculate College, Ireland)*; Kamarul Imran Musa (Universiti Sains Malaysia, Kota Bharu, Malaysia)*; Vera Musil (University of Zagreb, Croatia)*; Gabriele Nagel (Ulm University, Germany)*; Harunobu Nakamura (Kobe University, Japan)*; Jana Námešná (Regional Authority of Public Health, Banska Bystrica, Slovakia)*; Ei Ei K Nang (National University of Singapore, Singapore)*; Vinay B Nangia (Suraj Eye Institute, India)*; Martin Nankap (Helen Keller International, Cameroon)*; Sameer Narake (Healis - Sekhsaria Institute for Public Health, India)*; Eva Maria Navarrete-Muñoz (CIBER en Epidemiología y Salud Pública, Spain)*; William A Neal (West Virginia University, USA)*; Ilona Nenko (Jagiellonian University Medical College, Poland)*; Martin Neovius (Karolinska Institutet, Sweden)*; Flavio Nervi (Pontificia Universidad Católica de Chile, Chile)*; Hannelore K Neuhauser (Robert Koch Institute, Germany)*; Nguyen D Nguyen (University of Pharmacy and Medicine of Ho Chi Minh City, Vietnam)*; Quang Ngoc Nguyen (Hanoi Medical University, Vietnam)*; Ramfis E Nieto-Martínez (Universidad Centro-Occidental Lisandro Alvarado, Venezuela)*; Guang Ning (Shanghai Jiao-Tong University School of Medicine, China)*; Toshiharu Ninomiya (Kyushu University, Japan)*; Sania Nishtar (Heartfile, Pakistan)*; Marianna Noale (National Research Council, Italy)*; Teresa Norat (Imperial College London, UK)*; Davide Noto (University of Palermo, Italy)*; Mohannad Al Nsour (Eastern Mediterranean Public Health Network, Jordan)*; Dermot O'Reilly (The Queen's University of Belfast, UK)*; Kyungwon Oh (Korea Centers for Disease Control and Prevention, South Korea)*; Iman H Olayan (Kuwait Institute for Scientific Research, Kuwait)*; Maria Teresa Anselmo Olinto (University of Vale do Rio dos Sinos, Brazil)*; Maciej Oltarzewski (National Food and Nutrition Institute, Poland), Mohd A Omar (Ministry of Health Malaysia, Malaysia)*; Altan Onat (Istanbul University, Turkey)*; Pedro Ordunez (Pan American Health Organization, USA)*; Ana P Ortiz (University of Puerto Rico, Puerto Rico)*; Merete Osler (Research Center for Prevention and Health, Denmark)*; Clive Osmond (MRC Lifecourse Epidemiology Unit, UK)*; Sergej M Ostojic (University of Novi Sad, Serbia)*; Johanna A Otero (Fundación Oftalmológica de Santander, Colombia)*; Kim Overvad (Aarhus University, Denmark)*; Ellis Owusu-Dabo (Kwame Nkrumah University of Science and Technology, Ghana)*; Fred Michel Paccaud (Institute for Social and Preventive Medicine, Switzerland)*; Cristina Padez (University of Coimbra, Portugal)*; Elena Pahomova (University of Latvia, Latvia)*; Andrzej Pajak (Jagiellonian University Medical College, Poland)*; Domenico Palli (Cancer Prevention and Research Institute, Italy)*; Alberto Palloni (University of Wisconsin-Madison, USA)*; Luigi Palmieri (Istituto Superiore di Sanità, Italy)*; Songhomitra Panda-Jonas (Ruprecht-Karls-University of Heidelberg, Germany)*; Francesco Panza (University of Bari, Italy)*; Winsome R Parnell (University of Otago, New Zealand)*; Mahboubeh Parsaeian (Tehran University of Medical Sciences, Iran)*; Ivan Pecin (University of Zagreb, Croatia)*; Mangesh S Pednekar (Healis - Sekhsaria Institute for Public Health, India)*; Petra H Peeters (University Medical Center Utrecht, The Netherlands)*; Sergio Viana Peixoto (Oswaldo Cruz Foundation Rene Rachou Research Institute, Brazil)*; Markku Peltonen (National Institute for Health and Welfare, Finland)*; Alexandre C Pereira (Heart Institute, Brazil)*; Cynthia M Pérez (University of Puerto Rico, Puerto Rico)*; Annette Peters (Helmholtz Zentrum München, Germany)*; Janina Petkeviciene (Lithuanian University of Health Sciences, Lithuania)*; Niloofar Peykari (Non-Communicable Diseases Research Center, Iran)*; Son Thai Pham (Vietnam National Heart Institute, Vietnam)*; Iris Pigeot (Leibniz Institute for Prevention Research and Epidemiology - BIPS, Germany)*; Hynek Pikhart (University College London, UK)*; Aida Pilav (Federal Ministry of Health, Bosnia and Herzegovina)*; Lorenza Pilotto (Cardiovascular Prevention Centre, Italy)*; Francesco Pistelli (University Hospital of Pisa, Italy)*; Freda Pitakaka (University of New South Wales, Australia)*; Aleksandra Piwonska (The Cardinal Wyszynski Institute of Cardiology, Poland)*; Pedro Plans-Rubió (Public Health Agency of Catalonia, Spain)*; Bee Koon Poh (Universiti Kebangsaan Malaysia, Malaysia)*; Miquel Porta (Institut Hospital del Mar d'Investigacions Mèdiques, Spain)*; Marileen LP Portegies (Erasmus Medical Center Rotterdam, The Netherlands)*; Dimitrios Poulimeneas (Alexander Technological Educational Institute, Greece)*; Rajendra Pradeepa (Madras Diabetes Research Foundation, India)*; Mathur Prashant (Indian Council of Medical Research, India)*; Jacqueline F Price (University of Edinburgh, UK)*; Maria Puiu (Victor Babes University of Medicine and Pharmacy Timisoara, Romania)*; Margus Punab (Tartu University Clinics, Estonia), Radwan F Qasrawi (Al-Quds University, Palestine)*; Mostafa Qorbani (Alborz University of Medical Sciences, Iran)*; Tran Quoc Bao (Ministry of Health, Vietnam)*; Ivana Radic (University of Novi Sad, Serbia)*; Ricardas Radisauskas (Lithuanian University of Health Sciences, Lithuania)*; Mahmudur Rahman (Institute of Epidemiology Disease Control and Research, Bangladesh)*; Olli Raitakari (Turku University Hospital, Finland)*; Manu Raj (Amrita Institute of Medical Sciences, India)*; Sudha Ramachandra Rao (National Institute of Epidemiology, India)*; Ambady Ramachandran (India Diabetes Research Foundation, India)*; Jacqueline Ramke (University of New South Wales, Australia)*; Rafel Ramos (Institut Universitari d’Investigació en Atenció Primària Jordi Gol, Spain)*; Sanjay Rampal (University of Malaya, Malaysia)*; Finn Rasmussen (Karolinska Institutet, Sweden)*; Josep Redon (University of Valencia, Spain)*; Paul Ferdinand M Reganit (University of the Philippines, Philippines)*; Robespierre Ribeiro (Minas Gerais State Secretariat for Health, Brazil)*; Elio Riboli (Imperial College London, UK)*; Fernando Rigo (Health Center San Agustín, Spain)*; Tobias F Rinke de Wit (PharmAccess Foundation, The Netherlands)*; Raphael M Ritti-Dias (Hospital Israelita Albert Einstein, Brazil)*; Juan A Rivera (Instituto Nacional de Salud Pública, Mexico)*; Sian M Robinson (University of Southampton, UK)*; Cynthia Robitaille (Public Health Agency of Canada, Canada)*; Fernando Rodríguez-Artalejo (Universidad Autónoma de Madrid, Spain)*; María del Cristo Rodriguez-Perez (Canarian Health Service, Spain)*; Laura A Rodríguez-Villamizar (Universidad Industrial de Santander, Colombia)*; Rosalba Rojas-Martinez (Instituto Nacional de Salud Pública, Mexico)*; Nipa Rojroongwasinkul (Mahidol University, Thailand)*; Dora Romaguera (CIBEROBN, Spain)*; Kimmo Ronkainen (University of Eastern Finland, Finland)*; Annika Rosengren (University of Gothenburg, Sweden)*; Ian Rouse (Fiji National University, Fiji)*; Adolfo Rubinstein (Institute for Clinical Effectiveness and Health Policy, Argentina)*; Frank J Rühli (University of Zurich, Switzerland)*; Ornelas Rui (University of Madeira, Portugal)*; Blanca Sandra Ruiz-Betancourt (Instituto Mexicano del Seguro Social, Mexico)*; Andrea RV Russo Horimoto (Heart Institute, Brazil)*; Marcin Rutkowski (Medical University of Gdansk, Poland)*; Charumathi Sabanayagam (Singapore Eye Research Institute, Singapore)*; Harshpal S Sachdev (Sitaram Bhartia Institute of Science and Research, India)*; Olfa Saidi (Faculty of medicine of Tunis, Tunisia)*; Benoit Salanave (French Public Health Agency, France)*; Eduardo Salazar Martinez (National Institute of Public Health, Mexico)*; Veikko Salomaa (National Institute for Health and Welfare, Finland)*; Jukka T Salonen (University of Helsinki, Finland)*; Massimo Salvetti (University of Brescia, Italy)*; Jose Sánchez-Abanto (National Institute of Health, Peru)*; Sandjaja (Ministry of Health, Indonesia); Susana Sans (Catalan Department of Health, Spain)*; Diana A Santos (Universidade de Lisboa, Portugal)*; Osvaldo Santos (Institute of Preventive Medicine and Public Health, Portugal)*; Renata Nunes dos Santos (University of Sao Paulo Clinics Hospital, Brazil)*; Rute Santos (University of Porto, Portugal)*; Jouko L Saramies (South Karelia Social and Health Care District, Finland)*; Luis B Sardinha (Universidade de Lisboa, Portugal)*; Nizal Sarrafzadegan (Isfahan Cardiovascular Research Center, Iran)*; Kai-Uwe Saum (German Cancer Research Center, Germany)*; Savvas C Savva (Research and Education Institute of Child Health, Cyprus)*; Marcia Scazufca (University of Sao Paulo Clinics Hospital, Brazil)*; Angelika Schaffrath Rosario (Robert Koch Institute, Germany)*; Herman Schargrodsky (Hospital Italiano de Buenos Aires, Argentina)*; Anja Schienkiewitz (Robert Koch Institute, Germany)*; Ida Maria Schmidt (Rigshospitalet, Denmark)*; Ione J Schneider (Federal University of Santa Catarina, Brazil)*; Constance Schultsz (Academic Medical Center of University of Amsterdam, The Netherlands)*; Aletta E Schutte (MRC North-West University, South Africa)*; Aye Aye Sein (Ministry of Health, Myanmar)*; Abhijit Sen (Norwegian University of Science and Technology, Norway)*; Idowu O Senbanjo (Lagos State University College of Medicine, Nigeria)*; Sadaf G Sepanlou (Digestive Diseases Research Institute, Iran)*; Svetlana A Shalnova (National Research Centre for Preventive Medicine, Russia)*; Sanjib K Sharma (B P Koirala Institute of Health Sciences, Nepal)*; Jonathan E Shaw (Baker IDI Heart and Diabetes Institute, Australia)*; Kenji Shibuya (The University of Tokyo, Japan)*; Dong Wook Shin (Seoul National University College of Medicine, South Korea)*; Youchan Shin (Singapore Eye Research Institute, Singapore)*; Rahman Shiri (Finnish Institute of Occupational Health, Finland)*; Rosalynn Siantar (Singapore Eye Research Institute, Singapore)*; Abla M Sibai (American University of Beirut, Lebanon)*; Antonio M Silva (Federal University of Maranhao, Brazil)*; Diego Augusto Santos Silva (Federal University of Santa Catarina, Brazil)*; Mary Simon (India Diabetes Research Foundation, India)*; Judith Simons (St Vincent's Hospital, Australia)*; Leon A Simons (University of New South Wales, Australia)*; Michael Sjostrom (Karolinska Institutet, Sweden)*; Jolanta Slowikowska-Hilczer (Medical University of Lodz, Poland)*; Przemyslaw Slusarczyk (International Institute of Molecular and Cell Biology, Poland)*; Liam Smeeth (London School of Hygiene & Tropical Medicine, UK)*; Margaret C Smith (University of Oxford, UK)*; Marieke B Snijder (Academic Medical Center of University of Amsterdam, The Netherlands)*; Hung-Kwan So (The Chinese University of Hong Kong, China)*; Eugène Sobngwi (University of Yaoundé 1, Cameroon)*; Stefan Söderberg (Umeå University, Sweden)*; Moesijanti YE Soekatri (Health Polytechnics Institute, Indonesia)*; Vincenzo Solfrizzi (University of Bari, Italy)*; Emily Sonestedt (Lund University, Sweden)*; Yi Song (Peking University, China)*; Thorkild IA Sørensen (University of Copenhagen, Denmark)*; Maroje Soric (University of Zagreb, Croatia)*; Charles Sossa Jérome (Institut Régional de Santé Publique, West Africa)*; Aicha Soumare (University of Bordeaux, France)*; Jan A Staessen (University of Leuven, Belgium)*; Gregor Starc (University of Ljubljana, Slovenia)*; Maria G Stathopoulou (INSERM, France)*; Kaspar Staub (University of Zurich, Switzerland)*; Bill Stavreski (Heart Foundation, Australia)*; Jostein Steene-Johannessen (Norwegian School of Sport Sciences, Norway)*; Peter Stehle (Bonn University, Germany)*; Aryeh D Stein (Emory University, USA)*; George S Stergiou (Sotiria Hospital, Greece)*; Jochanan Stessman (Hadassah University Medical Center, Israel)*; Jutta Stieber (Helmholtz Zentrum München, Germany)*; Doris Stöckl (Helmholtz Zentrum München, Germany)*; Tanja Stocks (Lund University, Sweden)*; Jakub Stokwiszewski (National Institute of Public Health-National Institute of Hygiene, Poland)*; Gareth Stratton (Swansea University, UK)*; Karien Stronks (University of Amsterdam, The Netherlands)*; Maria Wany Strufaldi (Federal University of São Paulo, Brazil)*; Chien-An Sun (Fu Jen Catholic University, Taiwan)*; Johan Sundström (Uppsala University, Sweden)*; Yn-Tz Sung (The Chinese University of Hong Kong, China)*; Jordi Sunyer (ISGlobal Centre for Research in Environmental Epidemiology, Spain)*; Paibul Suriyawongpaisal (Mahidol University, Thailand)*; Boyd A Swinburn (The University of Auckland, New Zealand)*; Rody G Sy (University of the Philippines, Philippines)*; Lucjan Szponar (National Food and Nutrition Institute, Poland)*; E Shyong Tai (National University of Singapore, Singapore)*; Mari-Liis Tammesoo (University of Tartu, Estonia)*; Abdonas Tamosiunas (Lithuanian University of Health Sciences, Lithuania)*; Line Tang (Research Centre for Prevention and Health, Denmark)*; Xun Tang (Peking University Health Science Center, China)*; Frank Tanser (University of KwaZulu-Natal, South Africa)*; Yong Tao (Peking University, China)*; Mohammed Rasoul Tarawneh (Ministry of Health, Jordan)*; Jakob Tarp (University of Southern Denmark, Denmark)*; Carolina B Tarqui-Mamani (National Institute of Health, Peru)*; Anne Taylor (The University of Adelaide, Australia)*; Félicité Tchibindat (UNICEF, Cameroon)*; Holger Theobald (Karolinska Institutet, Sweden)*; Lutgarde Thijs (University of Leuven, Belgium)*; Betina H Thuesen (Research Centre for Prevention and Health, Denmark)*; Anne Tjonneland (Danish Cancer Society Research Centre, Denmark)*; Hanna K Tolonen (National Institute for Health and Welfare, Finland)*; Janne S Tolstrup (University of Southern Denmark, Denmark)*; Murat Topbas (Karadeniz Technical University, Turkey)*; Roman Topór-Madry (Jagiellonian University Medical College, Poland)*; Maties Torrent (IB-SALUT Area de Salut de Menorca, Spain)*; Stefania Toselli (University of Bologna, Italy)*; Pierre Traissac (Institut de Recherche pour le Développement, France)*; Antonia Trichopoulou (Hellenic Health Foundation, Greece)*; Dimitrios Trichopoulos (Harvard TH Chan School of Public Health, USA; deceased)*; Oanh TH Trinh (University of Pharmacy and Medicine of Ho Chi Minh City, Vietnam)*; Atul Trivedi (Government Medical College, India)*; Lechaba Tshepo (Sefako Makgatho Health Science University, South Africa)*; Marshall K Tulloch-Reid (The University of the West Indies, Jamaica)*; Tomi-Pekka Tuomainen (University of Eastern Finland, Finland)*; Jaakko Tuomilehto (Dasman Diabetes Institute, Kuwait)*; Maria L Turley (Ministry of Health, New Zealand)*; Per Tynelius (Karolinska Institutet, Sweden)*; Themistoklis Tzotzas (Hellenic Medical Association for Obesity, Greece)*; Christophe Tzourio (University of Bordeaux, France)*; Peter Ueda (Harvard TH Chan School of Public Health, USA)*; Flora AM Ukoli (Meharry Medical College, USA)*; Hanno Ulmer (Medical University of Innsbruck, Austria)*; Belgin Unal (Dokuz Eylul University, Turkey)*; Hannu MT Uusitalo (University of Tampere Tays Eye Center, Finland)*; Gonzalo Valdivia (Pontificia Universidad Católica de Chile, Chile)*; Susana Vale (University of Porto, Portugal)*; Damaskini Valvi (Harvard TH Chan School of Public Health, USA)*; Yvonne T van der Schouw (University Medical Center Utrecht, The Netherlands)*; Koen Van Herck (Ghent University, Belgium)*; Hoang Van Minh (Hanoi School of Public Health, Vietnam)*; Lenie van Rossem (University Medical Center Utrecht, The Netherlands)*; Irene GM van Valkengoed (Academic Medical Center of University of Amsterdam, The Netherlands)*; Dirk Vanderschueren (Katholieke Universiteit Leuven, Belgium)*; Diego Vanuzzo (Centro di Prevenzione Cardiovascolare Udine, Italy)*; Lars Vatten (Norwegian University of Science and Technology, Norway)*; Tomas Vega (Consejería de Sanidad Junta de Castilla y León, Spain)*; Gustavo Velasquez-Melendez (Universidade Federal de Minas Gerais, Brazil)*; Giovanni Veronesi (University of Insubria, Italy)*; WM Monique Verschuren (National Institute for Public Health and the Environment, The Netherlands)*; Roosmarijn Verstraeten (Institute of Tropical Medicine, Belgium)*; Cesar G Victora (Universidade Federal de Pelotas, Brazil)*; Giovanni Viegi (Italian National Research Council, Italy)*; Lucie Viet (National Institute for Public Health and the Environment, The Netherlands)*; Eira Viikari-Juntura (Finnish Institute of Occupational Health, Finland)*; Paolo Vineis (Imperial College London, UK)*; Jesus Vioque (Universidad Miguel Hernandez, Spain)*; Jyrki K Virtanen (University of Eastern Finland, Finland)*; Sophie Visvikis-Siest (INSERM, France)*; Bharathi Viswanathan (Ministry of Health, Seychelles)*; Peter Vollenweider (Lausanne University Hospital, Switzerland)*; Sari Voutilainen (University of Eastern Finland, Finland)*; Ana Vrdoljak (UHC Zagreb, Croatia)*; Martine Vrijheid (ISGlobal Centre for Research in Environmental Epidemiology, Spain)*; Alisha N Wade (University of the Witwatersrand, South Africa)*; Aline Wagner (University of Strasbourg, France)*; Janette Walton (University College Cork, Ireland)*; Wan Nazaimoon Wan Mohamud (Institute for Medical Research, Malaysia)*; Ming-Dong Wang (Public Health Agency of Canada, Canada)*; Qian Wang (Xinjiang Medical University, China)*; Ya Xing Wang (Beijing Tongren Hospital, China)*; S Goya Wannamethee (University College London, UK)*; Nicholas Wareham (University of Cambridge, UK)*; Deepa Weerasekera (Ministry of Health, New Zealand)*; Peter H Whincup (St George’s, University of London, UK)*; Kurt Widhalm (Medical University of Vienna, Austria)*; Indah S Widyahening (Universitas Indonesia, Indonesia)*; Andrzej Wiecek (Medical University of Silesia, Poland)*; Alet H Wijga (National Institute for Public Health and the Environment, The Netherlands)*; Rainford J Wilks (The University of the West Indies, Jamaica)*; Johann Willeit (Medical University Innsbruck, Austria)*; Tom Wilsgaard (UiT The Arctic University of Norway, Norway)*; Bogdan Wojtyniak (National Institute of Public Health-National Institute of Hygiene, Poland)*; Jyh Eiin Wong (Universiti Kebangsaan Malaysia, Malaysia)*; Tien Yin Wong (Duke-NUS Graduate Medical School, Singapore)*; Jean Woo (The Chinese University of Hong Kong, China)*; Mark Woodward (University of Sydney, Australia; University of Oxford, UK)*; Frederick C Wu (University of Manchester, UK)*; Jianfeng Wu (Shandong University of Traditional Chinese Medicine, China)*; Shou Ling Wu (Kailuan General Hospital, China)*; Haiquan Xu (Institute of Food and Nutrition Development of Ministry of Agriculture, China)*; Liang Xu (Capital Medical University, China)*; Uruwan Yamborisut (Mahidol University, Thailand)*; Weili Yan (Children's Hospital of Fudan University, China)*; Xiaoguang Yang (Chinese Center for Disease Control and Prevention, China)*; Nazan Yardim (Ministry of Health, Turkey)*; Xingwang Ye (University of Chinese Academy of Sciences, China)*; Panayiotis K Yiallouros (University of Cyprus, Cyprus)*; Akihiro Yoshihara (Niigata University, Japan)*; Qi Sheng You (Capital Medical University, China)*; Novie O Younger-Coleman (The University of the West Indies, Jamaica)*; Ahmad F Yusoff (Ministry of Health Malaysia, Malaysia)*; Ahmad A Zainuddin (Universiti Teknologi MARA, Malaysia)*; Sabina Zambon (University of Padova, Italy)*; Tomasz Zdrojewski (Medical University of Gdansk, Poland)*; Yi Zeng (Duke University, USA)*; Dong Zhao (Beijing Anzhen Hospital, Capital Medical University, China)*; Wenhua Zhao (Chinese Center for Disease Control and Prevention, China)*; Yingfeng Zheng (Singapore Eye Research Institute, Singapore)*; Maigeng Zhou (Chinese Center for Disease Control and Prevention, China)*; Dan Zhu (Inner Mongolia Medical University, China)*; Esther Zimmermann (Bispebjerg and Frederiksberg Hospitals, Denmark)*; Julio Zuñiga Cisneros (Gorgas Memorial Institute of Public Health, Panama).

Reviewing Editor

  1. Eduardo Franco, Reviewing Editor, McGill University, Canada

Publication history

  1. Received: December 6, 2015
  2. Accepted: June 7, 2016
  3. Version of Record published: July 26, 2016 (version 1)
  4. Version of Record updated: April 18, 2017 (version 2)

Copyright

© 2016, Franco et al

This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 148,274
    Page views
  • 11,599
    Downloads
  • 11
    Citations

Article citation count generated by polling the highest count across the following sources: PubMed Central, Crossref, Scopus.

Comments

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Epidemiology and Global Health
    2. Genomics and Evolutionary Biology
    Michelle M Riehle et al.
    Research Article
    1. Genomics and Evolutionary Biology
    2. Microbiology and Infectious Disease
    Kevin S Bonham et al.
    Research Article