Microbiota-driven transcriptional changes in prefrontal cortex override genetic differences in social behavior

  1. Mar Gacias  Is a corresponding author
  2. Sevasti Gaspari
  3. Patricia Mae G Santos
  4. Sabrina Tamburini
  5. Monica Andrade
  6. Fan Zang
  7. Nan Shen
  8. Vladimir Tolstikov
  9. Michael A Kiebish
  10. Jeffrey L Dupree
  11. Venetia Zachariou
  12. Jose C Clemente
  13. Patrizia Casaccia
  1. Icahn School of Medicine at Mount Sinai, United States
  2. Icahn School of Medicine at Mount Sinaii, United States
  3. BERG, United States
  4. Virginia Commonwealth University, United States

Abstract

Gene-environment interactions impact the development of neuropsychiatric disorders, but the relative contributions are unclear. Here, we identify gut microbiota as sufficient to induce depressive-like behaviors in genetically distinct mouse strains. Daily gavage of saline in non-obese diabetic (NOD) mice induced a social avoidance behavior that was not observed in C57BL/6 mice. This was not observed in NOD animals with depleted microbiota via oral administration of antibiotics. Transfer of intestinal microbiota, including members of the Clostridiales, Lachnospiraceae and Ruminococcaceae, from vehicle-gavaged NOD donors to microbiota-depleted C57BL/6 recipients was sufficient to induce social avoidance and change gene expression and myelination in the prefrontal cortex. Metabolomic analysis identified increased cresol levels in these mice, and exposure of cultured oligodendrocytes to this metabolite prevented myelin gene expression and differentiation. Our results thus demonstrate that the gut microbiota modifies the synthesis of key metabolites affecting gene expression in the prefrontal cortex, thereby modulating social behavior.

Article and author information

Author details

  1. Mar Gacias

    Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, United States
    For correspondence
    mar.gacias-monserrat@mssm.edu
    Competing interests
    The authors declare that no competing interests exist.
  2. Sevasti Gaspari

    Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Patricia Mae G Santos

    Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Sabrina Tamburini

    Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Monica Andrade

    Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Fan Zang

    Department of Neuroscience, Icahn School of Medicine at Mount Sinaii, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Nan Shen

    Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Vladimir Tolstikov

    BERG, Framingham, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Michael A Kiebish

    BERG, Framingham, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Jeffrey L Dupree

    Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Venetia Zachariou

    Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Jose C Clemente

    Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Patrizia Casaccia

    Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, United States
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols of the Icahn School of Medicine at Mount Sinai (#08-0676, #08-0675; LA10-00398; LA12-00193; LA12-00146).

Reviewing Editor

  1. Peggy Mason, University of Chicago, United States

Publication history

  1. Received: December 3, 2015
  2. Accepted: April 7, 2016
  3. Accepted Manuscript published: April 20, 2016 (version 1)
  4. Accepted Manuscript updated: May 3, 2016 (version 2)
  5. Version of Record published: May 16, 2016 (version 3)

Copyright

© 2016, Gacias et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 10,109
    Page views
  • 2,700
    Downloads
  • 188
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Mar Gacias
  2. Sevasti Gaspari
  3. Patricia Mae G Santos
  4. Sabrina Tamburini
  5. Monica Andrade
  6. Fan Zang
  7. Nan Shen
  8. Vladimir Tolstikov
  9. Michael A Kiebish
  10. Jeffrey L Dupree
  11. Venetia Zachariou
  12. Jose C Clemente
  13. Patrizia Casaccia
(2016)
Microbiota-driven transcriptional changes in prefrontal cortex override genetic differences in social behavior
eLife 5:e13442.
https://doi.org/10.7554/eLife.13442

Further reading

  1. Microbes in the gut influence the social behaviour of mice.

    1. Neuroscience
    Lindsay Collins, John Francis ... David A McCormick
    Research Article Updated

    Fluctuations in brain and behavioral state are supported by broadly projecting neuromodulatory systems. In this study, we use mesoscale two-photon calcium imaging to examine spontaneous activity of cholinergic and noradrenergic axons in awake mice in order to determine the interaction between arousal/movement state transitions and neuromodulatory activity across the dorsal cortex at distances separated by up to 4 mm. We confirm that GCaMP6s activity within axonal projections of both basal forebrain cholinergic and locus coeruleus noradrenergic neurons track arousal, indexed as pupil diameter, and changes in behavioral engagement, as reflected by bouts of whisker movement and/or locomotion. The broad coordination in activity between even distant axonal segments indicates that both of these systems can communicate, in part, through a global signal, especially in relation to changes in behavioral state. In addition to this broadly coordinated activity, we also find evidence that a subpopulation of both cholinergic and noradrenergic axons may exhibit heterogeneity in activity that appears to be independent of our measures of behavioral state. By monitoring the activity of cholinergic interneurons in the cortex, we found that a subpopulation of these cells also exhibit state-dependent (arousal/movement) activity. These results demonstrate that cholinergic and noradrenergic systems provide a prominent and broadly synchronized signal related to behavioral state, and therefore may contribute to state-dependent cortical activity and excitability.