Quality control in oocytes by p63 is based on a spring-loaded activation mechanism on the molecular and cellular level

  1. Daniel Coutandin
  2. Christian Osterburg
  3. Ratnesh Kumar Srivastav
  4. Manuela Sumyk
  5. Sebastian Kehrloesser
  6. Jakob Gebel
  7. Marcel Tuppi
  8. Jens Hannewald
  9. Birgit Schäfer
  10. Eidarus Salah
  11. Sebastian Mathea
  12. Uta Müller-Kuller
  13. James Doutch
  14. Manuel Grez
  15. Stefan Knapp
  16. Volker Dötsch  Is a corresponding author
  1. Goethe University, Germany
  2. Merck KGaA, Germany
  3. University of Oxford, United Kingdom
  4. Georg-Speyer Haus, Germany
  5. ISIS Neutron and Muon Source, United Kingdom
  6. Georg-Speyer-Haus, Germany

Abstract

Mammalian oocytes are arrested in the dictyate stage of meiotic prophase I for long periods of time, during which the high concentration of the p53 family member TAp63α sensitizes them to DNA damage-induced apoptosis. TAp63α is kept in an inactive and exclusively dimeric state but undergoes rapid phosphorylation-induced tetramerization and concomitant activation upon detection of DNA damage. Here we show that the TAp63α dimer is a kinetically trapped state. Activation follows a spring-loaded mechanism not requiring further translation of other cellular factors in oocytes and is associated with unfolding of the inhibitory structure that blocks the tetramerization interface. Using a combination of biophysical methods as well as cell and ovary culture experiments we explain how TAp63α is kept inactive in the absence of DNA damage but causes rapid oocyte elimination in response to a few DNA double strand breaks thereby acting as the key quality control factor in maternal reproduction.

Article and author information

Author details

  1. Daniel Coutandin

    Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance and Cluster of Excellence Macromolecular Complexes, Goethe University, Frankfurt, Germany
    Competing interests
    No competing interests declared.
  2. Christian Osterburg

    Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance and Cluster of Excellence Macromolecular Complexes, Goethe University, Frankfurt, Germany
    Competing interests
    No competing interests declared.
  3. Ratnesh Kumar Srivastav

    Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance and Cluster of Excellence Macromolecular Complexes, Goethe University, Frankfurt, Germany
    Competing interests
    No competing interests declared.
  4. Manuela Sumyk

    Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance and Cluster of Excellence Macromolecular Complexes, Goethe University, Frankfurt, Germany
    Competing interests
    No competing interests declared.
  5. Sebastian Kehrloesser

    Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance and Cluster of Excellence Macromolecular Complexes, Goethe University, Frankfurt, Germany
    Competing interests
    No competing interests declared.
  6. Jakob Gebel

    Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance and Cluster of Excellence Macromolecular Complexes, Goethe University, Frankfurt, Germany
    Competing interests
    No competing interests declared.
  7. Marcel Tuppi

    Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance and Cluster of Excellence Macromolecular Complexes, Goethe University, Frankfurt, Germany
    Competing interests
    No competing interests declared.
  8. Jens Hannewald

    MS-DTB-C Protein Purification, Merck KGaA, Darmstadt, Germany
    Competing interests
    No competing interests declared.
  9. Birgit Schäfer

    Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance and Cluster of Excellence Macromolecular Complexes, Goethe University, Frankfurt, Germany
    Competing interests
    No competing interests declared.
  10. Eidarus Salah

    Nuffield Department of Medicine, Structural Genomics Consortium, University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
  11. Sebastian Mathea

    Nuffield Department of Medicine, Structural Genomics Consortium, University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
  12. Uta Müller-Kuller

    Georg-Speyer Haus, Frankfurt, Germany
    Competing interests
    No competing interests declared.
  13. James Doutch

    Rutherford Appleton Laboratory, ISIS Neutron and Muon Source, Dodcot, United Kingdom
    Competing interests
    No competing interests declared.
  14. Manuel Grez

    Georg-Speyer-Haus, Frankfurt, Germany
    Competing interests
    No competing interests declared.
  15. Stefan Knapp

    Nuffield Department of Medicine, Structural Genomics Consortium, University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
  16. Volker Dötsch

    Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance and Cluster of Excellence Macromolecular Complexes, Goethe University, Frankfurt, Germany
    For correspondence
    vdoetsch@em.uni-frankfurt.de
    Competing interests
    Volker Dötsch, Reviewing editor, eLife.

Ethics

Animal experimentation: The work with mice was conducted according to the regulations of the Goethe University and the DFG (according to {section sign} 4 TierSchG) and supervised by the Tierschutzbeauftragte of Goethe University.

Copyright

© 2016, Coutandin et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,420
    views
  • 476
    downloads
  • 56
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Daniel Coutandin
  2. Christian Osterburg
  3. Ratnesh Kumar Srivastav
  4. Manuela Sumyk
  5. Sebastian Kehrloesser
  6. Jakob Gebel
  7. Marcel Tuppi
  8. Jens Hannewald
  9. Birgit Schäfer
  10. Eidarus Salah
  11. Sebastian Mathea
  12. Uta Müller-Kuller
  13. James Doutch
  14. Manuel Grez
  15. Stefan Knapp
  16. Volker Dötsch
(2016)
Quality control in oocytes by p63 is based on a spring-loaded activation mechanism on the molecular and cellular level
eLife 5:e13909.
https://doi.org/10.7554/eLife.13909

Share this article

https://doi.org/10.7554/eLife.13909

Further reading

    1. Structural Biology and Molecular Biophysics
    Pierce Eggan, Sharona E Gordon, William N Zagotta
    Research Article

    Cyclic nucleotide-binding domain (CNBD) ion channels play crucial roles in cellular-signaling and excitability and are regulated by the direct binding of cyclic adenosine- or guanosine-monophosphate (cAMP, cGMP). However, the precise allosteric mechanism governing channel activation upon ligand binding, particularly the energetic changes within domains, remains poorly understood. The prokaryotic CNBD channel SthK offers a valuable model for investigating this allosteric mechanism. In this study, we investigated the conformational dynamics and energetics of the SthK C-terminal region using a combination of steady-state and time-resolved transition metal ion Förster resonance energy transfer (tmFRET) experiments. We engineered donor-acceptor pairs at specific sites within a SthK C-terminal fragment by incorporating a fluorescent noncanonical amino acid donor and metal ion acceptors. Measuring tmFRET with fluorescence lifetimes, we determined intramolecular distance distributions in the absence and presence of cAMP or cGMP. The probability distributions between conformational states without and with ligand were used to calculate the changes in free energy (ΔG) and differences in free energy change (ΔΔG) in the context of a simple four-state model. Our findings reveal that cAMP binding produces large structural changes, with a very favorable ΔΔG. In contrast to cAMP, cGMP behaved as a partial agonist and only weakly promoted the active state. Furthermore, we assessed the impact of protein oligomerization and ionic strength on the structure and energetics of the conformational states. This study demonstrates the effectiveness of time-resolved tmFRET in determining the conformational states and the ligand-dependent energetics of the SthK C-terminal region.

    1. Structural Biology and Molecular Biophysics
    Chris van Hoorn, Andrew P Carter
    Research Article

    Ciliary rootlets are striated bundles of filaments that connect the base of cilia to internal cellular structures. Rootlets are critical for the sensory and motile functions of cilia. However, the mechanisms underlying these functions remain unknown, in part due to a lack of structural information of rootlet organization. In this study, we obtain 3D reconstructions of membrane-associated and purified rootlets from mouse retina using cryo-electron tomography. We show that flexible protrusions on the rootlet surface, which emanate from the cross-striations, connect to intracellular membranes. In purified rootlets, the striations were classified into amorphous (A)-bands, associated with accumulations on the rootlet surface, and discrete (D)-bands corresponding to punctate lines of density that run through the rootlet. These striations connect a flexible network of longitudinal filaments. Subtomogram averaging suggests the filaments consist of two intertwined coiled coils. The rootlet’s filamentous architecture, with frequent membrane-connecting cross-striations, lends itself well for anchoring large membranes in the cell.