ERG signaling in prostate cancer is driven through PRMT5-dependent methylation of the androgen receptor

Abstract

The TMPRSS2:ERG gene fusion is common in androgen receptor (AR) positive prostate cancers, yet its function remains poorly understood. From a screen for functionally relevant ERG interactors, we identify the arginine methyltransferase PRMT5. ERG recruits PRMT5 to AR-target genes, where PRMT5 methylates AR on arginine 761. This attenuates AR recruitment and transcription of genes expressed in differentiated prostate epithelium. The AR-inhibitory function of PRMT5 is restricted to TMPRSS2:ERG-positive prostate cancer cells. Mutation of this methylation site on AR results in a transcriptionally hyperactive AR, suggesting that the proliferative effects of ERG and PRMT5 are mediated through attenuating AR's ability to induce genes normally involved in lineage differentiation. This provides a rationale for targeting PRMT5 in TMPRSS2:ERG positive prostate cancers. Moreover, methylation of AR at arginine 761 highlights a mechanism for how the ERG oncogene may coax AR towards inducing proliferation versus differentiation.

Article and author information

Author details

  1. Zineb Mounir

    Department of Oncology, Novartis Institutes for BioMedical Research, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Joshua M Korn

    Department of Oncology, Novartis Institutes for BioMedical Research, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Thomas Westerling

    Department of Medical Oncology, Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Fallon Lin

    Department of Oncology, Novartis Institutes for BioMedical Research, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Christina A Kirby

    Center for Proteomic Chemistry, Novartis Institutes for BioMedical Research, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Markus Schirle

    Developmental and Molecular Pathways, Novartis Institutes for Biomedical Research, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Gregg McAllister

    Developmental and Molecular Pathways, Novartis Institutes for Biomedical Research, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Greg Hoffman

    Developmental and Molecular Pathways, Novartis Institutes for Biomedical Research, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Nadire Ramadan

    Developmental and Molecular Pathways, Novartis Institutes for Biomedical Research, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Anke Hartung

    Genomics Institute of the Novartis Research Foundation, Novartis Institutes for BioMedical Research, San Diego, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Yan Feng

    Developmental and Molecular Pathways, Novartis Institutes for Biomedical Research, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. David Randal Kipp

    Oncology, NIBR, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Christopher Quinn

    Oncology, NIBR, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. Michelle Fodor

    Oncology, NIBR, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  15. Jason Baird

    Oncology, NIBR, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  16. Marie Schoumacher

    Department of Oncology, Novartis Institutes for BioMedical Research, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  17. Ronald Meyer

    Department of Oncology, Novartis Institutes for Biomedical Research, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  18. James Deeds

    Department of Oncology, Novartis Institutes for Biomedical Research, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  19. Gilles Buchwalter

    Department of Medical Oncology, Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  20. Travis Stams

    Center for Proteomic Chemistry, Novartis Institutes for Biomedical Research, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  21. Nicholas Keen

    Department of Oncology, Novartis Institutes for Biomedical Research, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  22. William R Sellers

    Department of Oncology, Novartis Institutes for BioMedical Research, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  23. Myles Brown

    Department of Medical Oncology, Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  24. Raymond A Pagliarini

    Department of Oncology, Novartis Institutes for BioMedical Research, Cambridge, United States
    For correspondence
    raymond.pagliarini@novartis.com
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Scott A Armstrong, Memorial Sloan Kettering Cancer Center, United States

Version history

  1. Received: December 21, 2015
  2. Accepted: May 6, 2016
  3. Accepted Manuscript published: May 16, 2016 (version 1)
  4. Accepted Manuscript updated: May 18, 2016 (version 2)
  5. Version of Record published: June 15, 2016 (version 3)

Copyright

© 2016, Mounir et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,010
    views
  • 1,043
    downloads
  • 61
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Zineb Mounir
  2. Joshua M Korn
  3. Thomas Westerling
  4. Fallon Lin
  5. Christina A Kirby
  6. Markus Schirle
  7. Gregg McAllister
  8. Greg Hoffman
  9. Nadire Ramadan
  10. Anke Hartung
  11. Yan Feng
  12. David Randal Kipp
  13. Christopher Quinn
  14. Michelle Fodor
  15. Jason Baird
  16. Marie Schoumacher
  17. Ronald Meyer
  18. James Deeds
  19. Gilles Buchwalter
  20. Travis Stams
  21. Nicholas Keen
  22. William R Sellers
  23. Myles Brown
  24. Raymond A Pagliarini
(2016)
ERG signaling in prostate cancer is driven through PRMT5-dependent methylation of the androgen receptor
eLife 5:e13964.
https://doi.org/10.7554/eLife.13964

Share this article

https://doi.org/10.7554/eLife.13964

Further reading

    1. Cancer Biology
    2. Cell Biology
    Camille Dantzer, Justine Vaché ... Violaine Moreau
    Research Article

    Immune checkpoint inhibitors have produced encouraging results in cancer patients. However, the majority of ß-catenin-mutated tumors have been described as lacking immune infiltrates and resistant to immunotherapy. The mechanisms by which oncogenic ß-catenin affects immune surveillance remain unclear. Herein, we highlighted the involvement of ß-catenin in the regulation of the exosomal pathway and, by extension, in immune/cancer cell communication in hepatocellular carcinoma (HCC). We showed that mutated ß-catenin represses expression of SDC4 and RAB27A, two main actors in exosome biogenesis, in both liver cancer cell lines and HCC patient samples. Using nanoparticle tracking analysis and live-cell imaging, we further demonstrated that activated ß-catenin represses exosome release. Then, we demonstrated in 3D spheroid models that activation of β-catenin promotes a decrease in immune cell infiltration through a defect in exosome secretion. Taken together, our results provide the first evidence that oncogenic ß-catenin plays a key role in exosome biogenesis. Our study gives new insight into the impact of ß-catenin mutations on tumor microenvironment remodeling, which could lead to the development of new strategies to enhance immunotherapeutic response.

    1. Cancer Biology
    Fang Huang, Zhenwei Dai ... Yang Wang
    Research Article

    Aberrant alternative splicing is well-known to be closely associated with tumorigenesis of various cancers. However, the intricate mechanisms underlying breast cancer metastasis driven by deregulated splicing events remain largely unexplored. Here, we unveiled that RBM7 is decreased in lymph node and distant organ metastases of breast cancer as compared to primary lesions and low expression of RBM7 is correlated with the reduced disease-free survival of breast cancer patients. Breast cancer cells with RBM7 depletion exhibited an increased potential for lung metastasis compared to scramble control cells. The absence of RBM7 stimulated breast cancer cell migration, invasion, and angiogenesis. Mechanistically, RBM7 controlled the splicing switch of MFGE8, favoring the production of the predominant isoform of MFGE8, MFGE8-L. This resulted in the attenuation of STAT1 phosphorylation and alterations in cell adhesion molecules. MFGE8-L exerted an inhibitory effect on the migratory and invasive capability of breast cancer cells, while the truncated isoform MFGE8-S, which lack the second F5/8 type C domain had the opposite effect. In addition, RBM7 negatively regulates the NF-κB cascade and an NF-κB inhibitor could obstruct the increase in HUVEC tube formation caused by RBM7 silencing. Clinically, we noticed a positive correlation between RBM7 expression and MFGE8 exon7 inclusion in breast cancer tissues, providing new mechanistic insights for molecular-targeted therapy in combating breast cancer.