1. Neuroscience
Download icon

Lip movements entrain the observers' low-frequency brain oscillations to facilitate speech intelligibility

  1. Hyojin Park  Is a corresponding author
  2. Christoph Kayser
  3. Gregor Thut
  4. Joachim Gross
  1. University of Glasgow, United Kingdom
Research Article
  • Cited 52
  • Views 3,563
  • Annotations
Cite this article as: eLife 2016;5:e14521 doi: 10.7554/eLife.14521

Abstract

During continuous speech, lip movements provide visual temporal signals that facilitate speech processing. Here, using MEG we directly investigated how these visual signals interact with rhythmic brain activity in participants listening to and seeing the speaker. First, we investigated coherence between oscillatory brain activity and speaker's lip movements and demonstrated significant entrainment in visual cortex. We then used partial coherence to remove contributions of the coherent auditory speech signal from the lip-brain coherence. Comparing this synchronization between different attention conditions revealed that attending visual speech enhances the coherence between activity in visual cortex and the speaker's lips. Further, we identified a significant partial coherence between left motor cortex and lip movements and this partial coherence directly predicted comprehension accuracy. Our results emphasize the importance of visually entrained and attention-modulated rhythmic brain activity for the enhancement of audiovisual speech processing.

Article and author information

Author details

  1. Hyojin Park

    Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, United Kingdom
    For correspondence
    Hyojin.Park@glasgow.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
  2. Christoph Kayser

    Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Gregor Thut

    Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Joachim Gross

    Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Human subjects: This study was approved by the local ethics committee (CSE01321; University of Glasgow, Faculty of Information and Mathematical Sciences) and conducted in conformity with the Declaration of Helsinki. All participants provided informed written consent before participating in the experiment and received monetary compensation for their participation.

Reviewing Editor

  1. Andrew J King, University of Oxford, United Kingdom

Publication history

  1. Received: January 18, 2016
  2. Accepted: May 3, 2016
  3. Accepted Manuscript published: May 5, 2016 (version 1)
  4. Version of Record published: June 9, 2016 (version 2)

Copyright

© 2016, Park et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,563
    Page views
  • 709
    Downloads
  • 52
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

  1. Further reading

Further reading

    1. Genetics and Genomics
    2. Neuroscience
    Quadri Adewale et al.
    Research Article

    Both healthy aging and Alzheimer’s disease (AD) are characterized by concurrent alterations in several biological factors. However, generative brain models of aging and AD are limited in incorporating the measures of these biological factors at different spatial resolutions. Here, we propose a personalized bottom-up spatiotemporal brain model that accounts for the direct interplay between hundreds of RNA transcripts and multiple macroscopic neuroimaging modalities (PET, MRI). In normal elderly and AD participants, the model identifies top genes modulating tau and amyloid-β burdens, vascular flow, glucose metabolism, functional activity, and atrophy to drive cognitive decline. The results also revealed that AD and healthy aging share specific biological mechanisms, even though AD is a separate entity with considerably more altered pathways. Overall, this personalized model offers novel insights into the multiscale alterations in the elderly brain, with important implications for identifying effective genetic targets for extending healthy aging and treating AD progression.

    1. Neuroscience
    Vincent Robert et al.
    Research Article

    The hippocampus is critical for memory formation. The hypothalamic supramammillary nucleus (SuM) sends long-range projections to hippocampal area CA2. While the SuM-CA2 connection is critical for social memory, how this input acts on the local circuit is unknown. Using mice, we found that SuM axon stimulation elicited mixed excitatory and inhibitory responses in area CA2 pyramidal neurons (PNs). Parvalbumin-expressing basket cells were largely responsible for the feedforward inhibitory drive of SuM over area CA2. Inhibition recruited by the SuM input onto CA2 PNs increased the precision of action potential firing both in conditions of low and high cholinergic tone. Furthermore, SuM stimulation in area CA2 modulated CA1 activity, indicating that synchronized CA2 output drives a pulsed inhibition in area CA1. Hence, the network revealed here lays basis for understanding how SuM activity directly acts on the local hippocampal circuit to allow social memory encoding.