1. Gregory B Cogan  Is a corresponding author
  1. Duke University, United States

In the mid-1940s, the psychologist Alvin Liberman went to work with Franklin Cooper at the Haskins Laboratories in New Haven, Connecticut. He initially set out to create a device to turn printed letters into sounds so that blind people could ‘hear’ written texts (Liberman, 1996). His first foray involved shining a light through a slit onto the page in order to convert the lines of each letter into light and then into frequencies of sound. Liberman and colleagues reasoned that with enough training, blind users would be able to learn these arbitrary letter-sound pairs and so be able to understand the text.

The device was a spectacular failure: the users performed slowly and inaccurately. This led Liberman and colleagues to the realization that speech is not an arbitrary sequence of sounds, but a specific human code. They argued that the key to this code was the link between the speech sounds a person hears and the motor actions they make in order to speak. This important work led to decades of further research and helped lay the foundation for the psychological and neuroscientific study of speech.

When we watch and listen to someone speak, our brain combines the visual information of the movement of the speaker’s mouth with the speech sounds that are produced by this movement (McGurk and MacDonald, 1976). One of the core problems that researchers in this field are investigating is how these different sets of information are integrated to allow us to understand speech. Now, in eLife, Hyojin Park, Christoph Kayser, Gregor Thut and Joachim Gross of the University of Glasgow report that they have studied this integration by using a technique called magnetoencephalography to record the magnetic fields that are generated by the electrical currents of the brain (Park et al., 2016).

Park et al. presented volunteers with audio-visual clips of naturalistic speech and then asked them to complete a short questionnaire about the speech they heard and saw. In some cases, these clips were manipulated so that the audio did not match the video. In other cases, Park et al. presented a different speech signal to each ear and asked the volunteers to pay attention to just one signal. By analyzing these combinations, they could separate the brain activity that is associated with watching someone speak from the activity that processes the speech sounds themselves.

Park et al. found that a part of the continuous speech stream called the envelope, which is the slow rising and falling in the amplitude of the speech, was tracked in auditory areas of the brain (Figure 1). Conversely, the visual cortex tracked mouth movements. These results are a good replication and extension of previous data recorded from both the auditory domain (Cogan and Poeppel, 2011; Gross et al., 2013; Luo and Poeppel, 2007) and the visual domain (Luo et al., 2010; Zion Golumbic et al., 2013). However, Park et al. extended these findings by asking: what role does tracking the lip movements of a speaker play in speech perception?

A proposed model for the role of the motor system in speech perception.

A person produces speech by the coordinated movement of their articulatory system. The listener hears the sound (black line) and sees the mouth of the speaker open and close (represented by blue line). Some of the information in the sound is contained within the speech envelope (green line). The auditory regions of the brain (green circle) track the speech envelope, while the visual system (blue circle) tracks the visual movements of the mouth. The motor system (red circle) then decodes the intended mouth movement and integrates this with the response of the auditory regions to the incoming sounds.

To learn more about which parts of the brain track the lip movements of the speaker, Park et al. performed a partial regression on the lip movement, envelope and brain activity data to remove the response to sound and focus on just the effect of tracking the lip movements. This revealed two areas of the brain that actively track lip movements during speech. The first area, as found by previous researchers, was the visual cortex. This presumably tracks the lips as a visual signal. The second area was the left motor cortex.

To further establish the role of the motor cortex during speech perception, Park et al. examined the comprehension scores from the questionnaire. These scores could be predicted from the extent to which neural activity in the motor cortex synchronized with the lip movements observed by the participant: higher scores correlated with a higher degree of synchronization. This suggests that the ability of the motor cortex to track lip movements is important for understanding audiovisual speech, suggesting a new role for the motor system in speech perception. Park et al. interpret this finding to suggest that the motor system helps to predict the upcoming sound signal by simulating the speaker’s intended mouth movement (Arnal and Giraud, 2012; Figure 1).

While this is an important first step, it is still not clear how the lip movement tracked by the motor cortex is integrated with the response of auditory regions of the brain to speech sounds. Are mouth movements tracked specifically for ambiguous or difficult stimuli (Du et al., 2014) or is this tracking necessary for perceiving speech generally? Future work will hopefully clarify the specifics of this mechanism.

It is interesting and somewhat ironic that the motor cortex tracks the visual signals of mouth movement, given the early (and unsuccessful) efforts of Liberman and colleagues to help the blind ‘hear’ written texts. Indeed, just as these early researchers proposed, it seems that the link between the motor and auditory system is a key to understanding how speech is represented in the brain.

References

  1. Book
    1. Liberman AM
    (1996)
    Speech: A Special Code (1st Ed)
    Cambridge, MA: MIT Press.

Article and author information

Author details

  1. Gregory B Cogan

    Department of Biomedical Engineering, Duke University, Durham, United States
    For correspondence
    gregory.cogan@duke.edu
    Competing interests
    The author declares that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1557-6507

Publication history

  1. Version of Record published:

Copyright

© 2016, Cogan

This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,595
    views
  • 131
    downloads
  • 0
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Gregory B Cogan
(2016)
Language: I see what you are saying
eLife 5:e17693.
https://doi.org/10.7554/eLife.17693

Further reading

    1. Neuroscience
    Claire Meissner-Bernard, Friedemann Zenke, Rainer W Friedrich
    Research Article

    Biological memory networks are thought to store information by experience-dependent changes in the synaptic connectivity between assemblies of neurons. Recent models suggest that these assemblies contain both excitatory and inhibitory neurons (E/I assemblies), resulting in co-tuning and precise balance of excitation and inhibition. To understand computational consequences of E/I assemblies under biologically realistic constraints we built a spiking network model based on experimental data from telencephalic area Dp of adult zebrafish, a precisely balanced recurrent network homologous to piriform cortex. We found that E/I assemblies stabilized firing rate distributions compared to networks with excitatory assemblies and global inhibition. Unlike classical memory models, networks with E/I assemblies did not show discrete attractor dynamics. Rather, responses to learned inputs were locally constrained onto manifolds that ‘focused’ activity into neuronal subspaces. The covariance structure of these manifolds supported pattern classification when information was retrieved from selected neuronal subsets. Networks with E/I assemblies therefore transformed the geometry of neuronal coding space, resulting in continuous representations that reflected both relatedness of inputs and an individual’s experience. Such continuous representations enable fast pattern classification, can support continual learning, and may provide a basis for higher-order learning and cognitive computations.

    1. Neuroscience
    Cristina Gil Avila, Elisabeth S May ... Markus Ploner
    Research Article

    Chronic pain is a prevalent and debilitating condition whose neural mechanisms are incompletely understood. An imbalance of cerebral excitation and inhibition (E/I), particularly in the medial prefrontal cortex (mPFC), is believed to represent a crucial mechanism in the development and maintenance of chronic pain. Thus, identifying a non-invasive, scalable marker of E/I could provide valuable insights into the neural mechanisms of chronic pain and aid in developing clinically useful biomarkers. Recently, the aperiodic component of the electroencephalography (EEG) power spectrum has been proposed to represent a non-invasive proxy for E/I. We, therefore, assessed the aperiodic component in the mPFC of resting-state EEG recordings in 149 people with chronic pain and 115 healthy participants. We found robust evidence against differences in the aperiodic component in the mPFC between people with chronic pain and healthy participants, and no correlation between the aperiodic component and pain intensity. These findings were consistent across different subtypes of chronic pain and were similarly found in a whole-brain analysis. Their robustness was supported by preregistration and multiverse analyses across many different methodological choices. Together, our results suggest that the EEG aperiodic component does not differentiate between people with chronic pain and healthy individuals. These findings and the rigorous methodological approach can guide future studies investigating non-invasive, scalable markers of cerebral dysfunction in people with chronic pain and beyond.