Acute exposure to apolipoprotein A1 inhibits macrophage chemotaxis in vitro and monocyte recruitment in vivo

  1. Asif J Iqbal
  2. Tessa J Barrett
  3. Lewis Taylor
  4. Eileen McNeill
  5. Arun Manmadhan
  6. Carlota Recio
  7. Alfredo Carmineri
  8. Maximillian H Brodermann
  9. Gemma E White
  10. Dianne Cooper
  11. Joseph A DiDonato
  12. Stanley L Hazen
  13. Keith M Channon
  14. David R Greaves  Is a corresponding author
  15. Edward A Fisher  Is a corresponding author
  1. University of Oxford, United Kingdom
  2. NYU School of Medicine, United States
  3. Queen Mary University of London, United Kingdom
  4. Lerner Research Institute of the Cleveland Clinic, United States
  5. University of Oxford, United States

Abstract

Apolipoprotein A1 (apoA1) is the major protein component of high-density lipoprotein (HDL) and has well documented anti-inflammatory properties. To better understand the cellular and molecular basis of the anti-inflammatory actions of apoA1, we explored the effect of acute human apoA1 exposure on the migratory capacity of monocyte-derived cells in vitro and in vivo. Acute (20-60 min) apoA1 treatment induced a substantial (50-90%) reduction in macrophage chemotaxis to a range of chemoattractants. This acute treatment was anti-inflammatory in vivo as shown by pre-treatment of monocytes prior to adoptive transfer into an on-going murine peritonitis model. We find that apoA1 rapidly disrupts membrane lipid rafts, and as a consequence, dampens the PI3K/Akt signalling pathway that coordinates reorganization of the actin cytoskeleton and cell migration. Our data strengthen the evidence base for therapeutic apoA1 infusions in situations where reduced monocyte recruitment to sites of inflammation could have beneficial outcomes.

Article and author information

Author details

  1. Asif J Iqbal

    Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3224-3651
  2. Tessa J Barrett

    Division of Cardiology, NYU School of Medicine, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Lewis Taylor

    Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4622-9890
  4. Eileen McNeill

    Division of Cardiovascular Medicine, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Arun Manmadhan

    Division of Cardiology, NYU School of Medicine, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Carlota Recio

    Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Alfredo Carmineri

    Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  8. Maximillian H Brodermann

    Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  9. Gemma E White

    Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  10. Dianne Cooper

    William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  11. Joseph A DiDonato

    Department of Cellular and Molecular Medicine, Lerner Research Institute of the Cleveland Clinic, Cleavland, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Stanley L Hazen

    Department of Cellular and Molecular Medicine, Lerner Research Institute of the Cleveland Clinic, Cleveland, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Keith M Channon

    Division of Cardiovascular Medicine, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  14. David R Greaves

    Sir William Dunn School of Pathology, University of Oxford, Oxford, United States
    For correspondence
    david.greaves@path.ox.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
  15. Edward A Fisher

    Division of Cardiology, NYU School of Medicine, New York, United States
    For correspondence
    Edward.Fisher@nyumc.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9802-143X

Funding

British Heart Foundation (RG/10/15/28578, PG/10/6028496, RG/15/10/31485)

  • Asif J Iqbal
  • Eileen McNeill
  • Keith M Channon
  • David R Greaves

Royal Society (IE120747)

  • David R Greaves
  • Edward A Fisher

National Institutes of Health (HL098055, DK095684)

  • Edward A Fisher

BHF Centre of Research Excellence, Oxford (RE/08/004/23915)

  • Asif J Iqbal
  • David R Greaves

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Christopher K Glass, University of California, San Diego, United States

Ethics

Animal experimentation: UK animal studies were conducted with ethical approval from the Dunn School of Pathology Local Ethical Review Committee and in accordance with the UK Home Office regulations (Guidance on the Operation of Animals, Scientific Procedures Act, 1986). All USA animal experiments were carried out according to the guidelines of the National Institutes of Health and approved by the New York University Institutional Animal Care and Use Committee (Protocol 102090)

Human subjects: Human blood from anonymous healthy donors was obtained in the form of leukocyte cones from the NHS Blood and Transplant service. Leukocyte cones contain waste leukocytes isolated from individuals donating platelets via apharesis, and consist of a small volume (~10ml) of packed leukocytes with few red blood cells or platelets.

Version history

  1. Received: February 11, 2016
  2. Accepted: August 29, 2016
  3. Accepted Manuscript published: August 30, 2016 (version 1)
  4. Accepted Manuscript updated: September 2, 2016 (version 2)
  5. Accepted Manuscript updated: September 6, 2016 (version 3)
  6. Version of Record published: September 20, 2016 (version 4)

Copyright

© 2016, Iqbal et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,442
    views
  • 542
    downloads
  • 46
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Asif J Iqbal
  2. Tessa J Barrett
  3. Lewis Taylor
  4. Eileen McNeill
  5. Arun Manmadhan
  6. Carlota Recio
  7. Alfredo Carmineri
  8. Maximillian H Brodermann
  9. Gemma E White
  10. Dianne Cooper
  11. Joseph A DiDonato
  12. Stanley L Hazen
  13. Keith M Channon
  14. David R Greaves
  15. Edward A Fisher
(2016)
Acute exposure to apolipoprotein A1 inhibits macrophage chemotaxis in vitro and monocyte recruitment in vivo
eLife 5:e15190.
https://doi.org/10.7554/eLife.15190

Share this article

https://doi.org/10.7554/eLife.15190

Further reading

    1. Cell Biology
    Ang Li, Jianxun Yi ... Jingsong Zhou
    Research Article

    Amyotrophic lateral sclerosis (ALS) is a fatal neuromuscular disorder characterized by progressive weakness of almost all skeletal muscles, whereas extraocular muscles (EOMs) are comparatively spared. While hindlimb and diaphragm muscles of end-stage SOD1G93A (G93A) mice (a familial ALS mouse model) exhibit severe denervation and depletion of Pax7+satellite cells (SCs), we found that the pool of SCs and the integrity of neuromuscular junctions (NMJs) are maintained in EOMs. In cell sorting profiles, SCs derived from hindlimb and diaphragm muscles of G93A mice exhibit denervation-related activation, whereas SCs from EOMs of G93A mice display spontaneous (non-denervation-related) activation, similar to SCs from wild-type mice. Specifically, cultured EOM SCs contain more abundant transcripts of axon guidance molecules, including Cxcl12, along with more sustainable renewability than the diaphragm and hindlimb counterparts under differentiation pressure. In neuromuscular co-culture assays, AAV-delivery of Cxcl12 to G93A-hindlimb SC-derived myotubes enhances motor neuron axon extension and innervation, recapitulating the innervation capacity of EOM SC-derived myotubes. G93A mice fed with sodium butyrate (NaBu) supplementation exhibited less NMJ loss in hindlimb and diaphragm muscles. Additionally, SCs derived from G93A hindlimb and diaphragm muscles displayed elevated expression of Cxcl12 and improved renewability following NaBu treatment in vitro. Thus, the NaBu-induced transcriptomic changes resembling the patterns of EOM SCs may contribute to the beneficial effects observed in G93A mice. More broadly, the distinct transcriptomic profile of EOM SCs may offer novel therapeutic targets to slow progressive neuromuscular functional decay in ALS and provide possible ‘response biomarkers’ in pre-clinical and clinical studies.

    1. Cell Biology
    Simona Bolamperti, Hiroaki Saito ... Hanna Taipaleenmäki
    Research Article

    Osteoblast adherence to bone surfaces is important for remodeling bone tissue. This study demonstrates that deficiency of TG-interacting factor 1 (Tgif1) in osteoblasts results in altered cell morphology, reduced adherence to collagen type I-coated surfaces, and impaired migration capacity. Tgif1 is essential for osteoblasts to adapt a regular cell morphology and to efficiently adhere and migrate on collagen type I-rich matrices in vitro. Furthermore, Tgif1 acts as a transcriptional repressor of p21-activated kinase 3 (Pak3), an important regulator of focal adhesion formation and osteoblast spreading. Absence of Tgif1 leads to increased Pak3 expression, which impairs osteoblast spreading. Additionally, Tgif1 is implicated in osteoblast recruitment and activation of bone surfaces in the context of bone regeneration and in response to parathyroid hormone 1–34 (PTH 1–34) treatment in vivo in mice. These findings provide important novel insights in the regulation of the cytoskeletal architecture of osteoblasts.