Detection and manipulation of live antigen-expressing cells using conditionally stable nanobodies

  1. Jonathan CY Tang
  2. Eugene Drokhlyansky
  3. Behzad Etemad
  4. Stephanie Rudolph
  5. Binggege Guo
  6. Sui Wang
  7. Emily G Ellis
  8. Jonathan Z Li
  9. Constance L Cepko  Is a corresponding author
  1. Howard Hughes Medical Institute, Harvard Medical School, United States
  2. Harvard Medical School, United States

Abstract

The ability to detect and/or manipulate specific cell populations based upon the presence of intracellular protein epitopes would enable many types of studies and applications. Protein binders such as nanobodies (Nbs) can target untagged proteins (antigens) in the intracellular environment. However, genetically expressed protein binders are stable regardless of antigen expression, complicating their use for applications that require cell-specificity. Here, we created a conditional system in which the stability of an Nb depends upon an antigen of interest. We identified Nb framework mutations that can be used to rapidly create destabilized Nbs. Fusion of destabilized Nbs to various proteins enabled applications in living cells, such as optogenetic control of neural activity in specific cell types in the mouse brain, and detection of HIV-infected human cells by flow cytometry. These approaches are generalizable to other protein binders, and enable the rapid generation of single-polypeptide sensors and effectors active in cells expressing specific intracellular proteins.

Article and author information

Author details

  1. Jonathan CY Tang

    Departments of Genetics and Ophthalmology, Howard Hughes Medical Institute, Harvard Medical School, Boston, United States
    Competing interests
    Jonathan CY Tang, Submitted a patent application regarding destabilized nanobodies. International Application No. PCT/US2016/027749 Priority: US Prov. Appl. No. 62/148,595.
  2. Eugene Drokhlyansky

    Departments of Genetics and Ophthalmology, Howard Hughes Medical Institute, Harvard Medical School, Boston, United States
    Competing interests
    Eugene Drokhlyansky, Submitted a patent application regarding destabilized nanobodies. International Application No. PCT/US2016/027749Priority: US Prov. Appl. No. 62/148,595.
  3. Behzad Etemad

    Brigham and Women's Hospital, Harvard Medical School, Boston, United States
    Competing interests
    No competing interests declared.
  4. Stephanie Rudolph

    Department of Neurobiology, Harvard Medical School, Boston, United States
    Competing interests
    No competing interests declared.
  5. Binggege Guo

    Departments of Genetics and Ophthalmology, Howard Hughes Medical Institute, Harvard Medical School, Boston, United States
    Competing interests
    No competing interests declared.
  6. Sui Wang

    Departments of Genetics and Ophthalmology, Howard Hughes Medical Institute, Harvard Medical School, Boston, United States
    Competing interests
    Sui Wang, Submitted a patent application regarding destabilized nanobodies. International Application No. PCT/US2016/027749Priority: US Prov. Appl. No. 62/148,595.
  7. Emily G Ellis

    Department of Neurobiology, Harvard Medical School, Boston, United States
    Competing interests
    No competing interests declared.
  8. Jonathan Z Li

    Brigham and Women's Hospital, Harvard Medical School, Boston, United States
    Competing interests
    No competing interests declared.
  9. Constance L Cepko

    Departments of Genetics and Ophthalmology, Howard Hughes Medical Institute, Harvard Medical School, Boston, United States
    For correspondence
    cepko@genetics.med.harvard.edu
    Competing interests
    Constance L Cepko, Submitted a patent application regarding destabilized nanobodies. International Application No. PCT/US2016/027749 Priority: US Prov. Appl. No. 62/148,595.

Ethics

Animal experimentation: The Institutional Animal Care and Use Committee at Harvard Medical School approved all animal experiments conducted under protocols 428-R98, 04537 and 1493.

Copyright

© 2016, Tang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 9,473
    views
  • 1,800
    downloads
  • 83
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jonathan CY Tang
  2. Eugene Drokhlyansky
  3. Behzad Etemad
  4. Stephanie Rudolph
  5. Binggege Guo
  6. Sui Wang
  7. Emily G Ellis
  8. Jonathan Z Li
  9. Constance L Cepko
(2016)
Detection and manipulation of live antigen-expressing cells using conditionally stable nanobodies
eLife 5:e15312.
https://doi.org/10.7554/eLife.15312

Share this article

https://doi.org/10.7554/eLife.15312

Further reading

    1. Developmental Biology
    2. Genetics and Genomics
    Debashish U Menon, Prabuddha Chakraborty ... Terry Magnuson
    Research Article

    We present evidence implicating the BAF (BRG1/BRM Associated Factor) chromatin remodeler in meiotic sex chromosome inactivation (MSCI). By immunofluorescence (IF), the putative BAF DNA binding subunit, ARID1A (AT-rich Interaction Domain 1 a), appeared enriched on the male sex chromosomes during diplonema of meiosis I. Germ cells showing a Cre-induced loss of ARID1A arrested in pachynema and failed to repress sex-linked genes, indicating a defective MSCI. Mutant sex chromosomes displayed an abnormal presence of elongating RNA polymerase II coupled with an overall increase in chromatin accessibility detectable by ATAC-seq. We identified a role for ARID1A in promoting the preferential enrichment of the histone variant, H3.3, on the sex chromosomes, a known hallmark of MSCI. Without ARID1A, the sex chromosomes appeared depleted of H3.3 at levels resembling autosomes. Higher resolution analyses by CUT&RUN revealed shifts in sex-linked H3.3 associations from discrete intergenic sites and broader gene-body domains to promoters in response to the loss of ARID1A. Several sex-linked sites displayed ectopic H3.3 occupancy that did not co-localize with DMC1 (DNA meiotic recombinase 1). This observation suggests a requirement for ARID1A in DMC1 localization to the asynapsed sex chromatids. We conclude that ARID1A-directed H3.3 localization influences meiotic sex chromosome gene regulation and DNA repair.

    1. Cell Biology
    2. Developmental Biology
    Sofía Suárez Freire, Sebastián Perez-Pandolfo ... Mariana Melani
    Research Article

    Eukaryotic cells depend on exocytosis to direct intracellularly synthesized material toward the extracellular space or the plasma membrane, so exocytosis constitutes a basic function for cellular homeostasis and communication between cells. The secretory pathway includes biogenesis of secretory granules (SGs), their maturation and fusion with the plasma membrane (exocytosis), resulting in release of SG content to the extracellular space. The larval salivary gland of Drosophila melanogaster is an excellent model for studying exocytosis. This gland synthesizes mucins that are packaged in SGs that sprout from the trans-Golgi network and then undergo a maturation process that involves homotypic fusion, condensation, and acidification. Finally, mature SGs are directed to the apical domain of the plasma membrane with which they fuse, releasing their content into the gland lumen. The exocyst is a hetero-octameric complex that participates in tethering of vesicles to the plasma membrane during constitutive exocytosis. By precise temperature-dependent gradual activation of the Gal4-UAS expression system, we have induced different levels of silencing of exocyst complex subunits, and identified three temporarily distinctive steps of the regulated exocytic pathway where the exocyst is critically required: SG biogenesis, SG maturation, and SG exocytosis. Our results shed light on previously unidentified functions of the exocyst along the exocytic pathway. We propose that the exocyst acts as a general tethering factor in various steps of this cellular process.