The target of the DEAH-box NTP triphosphatase Prp43 in Saccharomyces cerevisiae spliceosomes is the U2 snRNP-intron interaction

  1. Jean-Baptiste Fourmann
  2. Olexandr Dybkov
  3. Dmitry E Agafonov
  4. Marcel J Tauchert
  5. Henning Urlaub
  6. Ralf Ficner
  7. Patrizia Fabrizio  Is a corresponding author
  8. Reinhard Lührmann  Is a corresponding author
  1. Max-Planck-Institute of Biophysical Chemistry, Germany
  2. Max Planck Institute for Biophysical Chemistry, Germany
  3. Georg August University of Göttingen, Germany

Abstract

The DEAH-box NTPase Prp43 and its cofactors Ntr1 and Ntr2 form the NTR complex and are required for disassembling intron-lariat spliceosomes (ILS) and defective earlier spliceosomes. However, the Prp43 binding site in the spliceosome and its target(s) are unknown. We show that Prp43 fused to Ntr1's G patch motif (Prp43_Ntr1GP) is as efficient as the NTR in ILS disassembly, yielding identical dissociation products and recognizing its natural ILS target even in the absence of Ntr1's C-terminal-domain (CTD) and Ntr2. Unlike the NTR, Prp43_Ntr1GP disassembles earlier spliceosomal complexes (A, B, Bact), indicating that Ntr2/Ntr1-CTD prevents NTR from disrupting properly assembled spliceosomes other than the ILS. The U2 snRNP-intron interaction is disrupted in all complexes by Prp43_Ntr1GP, and in the spliceosome contacts U2 proteins and the pre-mRNA, indicating that the U2 snRNP-intron interaction is Prp43's major target.

Article and author information

Author details

  1. Jean-Baptiste Fourmann

    Department of Cellular Biochemistry, Max-Planck-Institute of Biophysical Chemistry, Göttingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Olexandr Dybkov

    Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, Department of Cellular Biochemistry, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Dmitry E Agafonov

    Department of Cellular Biochemistry, Max-Planck-Institute of Biophysical Chemistry, Göttingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Marcel J Tauchert

    Department of Molecular Structure Biology, Institute for Microbiology and Genetics, Georg August University of Göttingen, Göttingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Henning Urlaub

    Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Ralf Ficner

    Molecular Structure Biology, Georg August University of Göttingen, Göttingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Patrizia Fabrizio

    Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
    For correspondence
    Patrizia.Fabrizio@mpi-bpc.mpg.de
    Competing interests
    The authors declare that no competing interests exist.
  8. Reinhard Lührmann

    Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
    For correspondence
    Reinhard.Luehrmann@mpi-bpc.mpg.de
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Timothy W Nilsen, Case Western Reserve University, United States

Version history

  1. Received: February 25, 2016
  2. Accepted: April 25, 2016
  3. Accepted Manuscript published: April 26, 2016 (version 1)
  4. Accepted Manuscript updated: April 27, 2016 (version 2)
  5. Version of Record published: May 13, 2016 (version 3)

Copyright

© 2016, Fourmann et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,337
    views
  • 349
    downloads
  • 38
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jean-Baptiste Fourmann
  2. Olexandr Dybkov
  3. Dmitry E Agafonov
  4. Marcel J Tauchert
  5. Henning Urlaub
  6. Ralf Ficner
  7. Patrizia Fabrizio
  8. Reinhard Lührmann
(2016)
The target of the DEAH-box NTP triphosphatase Prp43 in Saccharomyces cerevisiae spliceosomes is the U2 snRNP-intron interaction
eLife 5:e15564.
https://doi.org/10.7554/eLife.15564

Share this article

https://doi.org/10.7554/eLife.15564

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Isabelle Petit-Hartlein, Annelise Vermot ... Franck Fieschi
    Research Article

    NADPH oxidases (NOX) are transmembrane proteins, widely spread in eukaryotes and prokaryotes, that produce reactive oxygen species (ROS). Eukaryotes use the ROS products for innate immune defense and signaling in critical (patho)physiological processes. Despite the recent structures of human NOX isoforms, the activation of electron transfer remains incompletely understood. SpNOX, a homolog from Streptococcus pneumoniae, can serves as a robust model for exploring electron transfers in the NOX family thanks to its constitutive activity. Crystal structures of SpNOX full-length and dehydrogenase (DH) domain constructs are revealed here. The isolated DH domain acts as a flavin reductase, and both constructs use either NADPH or NADH as substrate. Our findings suggest that hydride transfer from NAD(P)H to FAD is the rate-limiting step in electron transfer. We identify significance of F397 in nicotinamide access to flavin isoalloxazine and confirm flavin binding contributions from both DH and Transmembrane (TM) domains. Comparison with related enzymes suggests that distal access to heme may influence the final electron acceptor, while the relative position of DH and TM does not necessarily correlate with activity, contrary to previous suggestions. It rather suggests requirement of an internal rearrangement, within the DH domain, to switch from a resting to an active state. Thus, SpNOX appears to be a good model of active NOX2, which allows us to propose an explanation for NOX2’s requirement for activation.

    1. Biochemistry and Chemical Biology
    2. Plant Biology
    Dietmar Funck, Malte Sinn ... Jörg S Hartig
    Research Article

    Metabolism and biological functions of the nitrogen-rich compound guanidine have long been neglected. The discovery of four classes of guanidine-sensing riboswitches and two pathways for guanidine degradation in bacteria hint at widespread sources of unconjugated guanidine in nature. So far, only three enzymes from a narrow range of bacteria and fungi have been shown to produce guanidine, with the ethylene-forming enzyme (EFE) as the most prominent example. Here, we show that a related class of Fe2+- and 2-oxoglutarate-dependent dioxygenases (2-ODD-C23) highly conserved among plants and algae catalyze the hydroxylation of homoarginine at the C6-position. Spontaneous decay of 6-hydroxyhomoarginine yields guanidine and 2-aminoadipate-6-semialdehyde. The latter can be reduced to pipecolate by pyrroline-5-carboxylate reductase but more likely is oxidized to aminoadipate by aldehyde dehydrogenase ALDH7B in vivo. Arabidopsis has three 2-ODD-C23 isoforms, among which Din11 is unusual because it also accepted arginine as substrate, which was not the case for the other 2-ODD-C23 isoforms from Arabidopsis or other plants. In contrast to EFE, none of the three Arabidopsis enzymes produced ethylene. Guanidine contents were typically between 10 and 20 nmol*(g fresh weight)-1 in Arabidopsis but increased to 100 or 300 nmol*(g fresh weight)-1 after homoarginine feeding or treatment with Din11-inducing methyljasmonate, respectively. In 2-ODD-C23 triple mutants, the guanidine content was strongly reduced, whereas it increased in overexpression plants. We discuss the implications of the finding of widespread guanidine-producing enzymes in photosynthetic eukaryotes as a so far underestimated branch of the bio-geochemical nitrogen cycle and propose possible functions of natural guanidine production.