CELF RNA binding proteins promote axon regeneration in C. elegans and mammals through alternative splicing of Syntaxins

  1. Lizhen Chen
  2. Zhijie Liu
  3. Bing Zhou
  4. Chaoliang Wei
  5. Yu Zhou
  6. Michael G Rosenfeld
  7. Xiang-Dong Fu
  8. Andrew D Chisholm
  9. Yishi Jin  Is a corresponding author
  1. University of Texas Health Science Center at San Antonio, United States
  2. University of California, San Diego, United States
  3. Howard Hughes Medical Institute, University of California, San Diego, United States

Abstract

Axon injury triggers dramatic changes in gene expression. While transcriptional regulation of injury-induced gene expression is widely studied, less is known about the roles of RNA binding proteins (RBPs) in post-transcriptional regulation during axon regeneration. In C. elegans the CELF (CUGBP and Etr-3 Like Factor) family RBP UNC-75 is required for axon regeneration. Using crosslinking immunoprecipitation coupled with deep sequencing (CLIP-seq) we identify a set of genes involved in synaptic transmission as mRNA targets of UNC-75. In particular, we show that UNC-75 regulates alternative splicing of two mRNA isoforms of the SNARE Syntaxin/unc-64. In C. elegans mutants lacking unc-75 or its targets, regenerating axons form growth cones, yet are deficient in extension. Extending these findings to mammalian axon regeneration, we show that mouse Celf2 expression is upregulated after peripheral nerve injury and that Celf2 mutant mice are defective in axon regeneration. Further, mRNAs for several Syntaxins show CELF2 dependent regulation. Our data delineate a post-transcriptional regulatory pathway with a conserved role in regenerative axon extension.

Article and author information

Author details

  1. Lizhen Chen

    Barshop Institute for Longevity and Aging Studies, Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Zhijie Liu

    Department of Medicine, School of Medicine, University of California, San Diego, San Diego, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Bing Zhou

    Department of Cellular and Molecular Medicine, School of Medicine, University of California, San Diego, San Diego, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Chaoliang Wei

    Department of Cellular and Molecular Medicine, School of Medicine, University of California, San Diego, San Diego, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Yu Zhou

    Department of Cellular and Molecular Medicine, School of Medicine, University of California, San Diego, San Diego, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Michael G Rosenfeld

    Howard Hughes Medical Institute, University of California, San Diego, San Diego, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Xiang-Dong Fu

    Department of Cellular and Molecular Medicine, School of Medicine, University of California, San Diego, San Diego, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Andrew D Chisholm

    Section of Neurobiology, Division of Biological Sciences, University of California, San Diego, San Diego, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Yishi Jin

    Section of Neurobiology, Division of Biological Sciences, University of California, San Diego, San Diego, United States
    For correspondence
    yijin@ucsd.edu
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (S13072) of the University of California. All surgery was performed under anesthesia, and every effort was made to minimize suffering.

Copyright

© 2016, Chen et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,476
    views
  • 725
    downloads
  • 30
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Lizhen Chen
  2. Zhijie Liu
  3. Bing Zhou
  4. Chaoliang Wei
  5. Yu Zhou
  6. Michael G Rosenfeld
  7. Xiang-Dong Fu
  8. Andrew D Chisholm
  9. Yishi Jin
(2016)
CELF RNA binding proteins promote axon regeneration in C. elegans and mammals through alternative splicing of Syntaxins
eLife 5:e16072.
https://doi.org/10.7554/eLife.16072

Share this article

https://doi.org/10.7554/eLife.16072

Further reading

    1. Genetics and Genomics
    2. Neuroscience
    Monique Marylin Alves de Almeida, Yves De Repentigny ... Rashmi Kothary
    Research Article

    Spinal muscular atrophy (SMA) is caused by mutations in the Survival Motor Neuron 1 (SMN1) gene. While traditionally viewed as a motor neuron disorder, there is involvement of various peripheral organs in SMA. Notably, fatty liver has been observed in SMA mouse models and SMA patients. Nevertheless, it remains unclear whether intrinsic depletion of SMN protein in the liver contributes to pathology in the peripheral or central nervous systems. To address this, we developed a mouse model with a liver-specific depletion of SMN by utilizing an Alb-Cre transgene together with one Smn2B allele and one Smn1 exon 7 allele flanked by loxP sites. Initially, we evaluated phenotypic changes in these mice at postnatal day 19 (P19), when the severe model of SMA, the Smn2B/- mice, exhibit many symptoms of the disease. The liver-specific SMN depletion does not induce motor neuron death, neuromuscular pathology or muscle atrophy, characteristics typically observed in the Smn2B/- mouse at P19. However, mild liver steatosis was observed, although no changes in liver function were detected. Notably, pancreatic alterations resembled that of Smn2B/-mice, with a decrease in insulin-producing β-cells and an increase in glucagon-producingα-cells, accompanied by a reduction in blood glucose and an increase in plasma glucagon and glucagon-like peptide (GLP-1). These changes were transient, as mice at P60 exhibited recovery of liver and pancreatic function. While the mosaic pattern of the Cre-mediated excision precludes definitive conclusions regarding the contribution of liver-specific SMN depletion to overall tissue pathology, our findings highlight an intricate connection between liver function and pancreatic abnormalities in SMA.

    1. Neuroscience
    William T Redman, Santiago Acosta-Mendoza ... Michael J Goard
    Research Article

    Although grid cells are one of the most well-studied functional classes of neurons in the mammalian brain, whether there is a single orientation and spacing value per grid module has not been carefully tested. We analyze a recent large-scale recording of medial entorhinal cortex to characterize the presence and degree of heterogeneity of grid properties within individual modules. We find evidence for small, but robust, variability and hypothesize that this property of the grid code could enhance the encoding of local spatial information. Performing analysis on synthetic populations of grid cells, where we have complete control over the amount heterogeneity in grid properties, we demonstrate that grid property variability of a similar magnitude to the analyzed data leads to significantly decreased decoding error. This holds even when restricted to activity from a single module. Our results highlight how the heterogeneity of the neural response properties may benefit coding and opens new directions for theoretical and experimental analysis of grid cells.