Human kinetochores are swivel joints that mediate microtubule attachments

  1. Chris A Smith
  2. Andrew D McAinsh  Is a corresponding author
  3. Nigel J Burroughs  Is a corresponding author
  1. University of Warwick, United Kingdom

Abstract

Chromosome segregation is a mechanical process that requires assembly of the mitotic spindle - a dynamic microtubule-based force-generating machine. Connections to this spindle are mediated by sister kinetochore pairs, that form dynamic end-on attachments to microtubules emanating from opposite spindle poles. This bi-orientation generates forces that have been reported to stretch the kinetochore itself, which has been suggested to silence the spindle checkpoint and allow anaphase onset. We reveal using three dimensional tracking that the outer kinetochore domain can swivel around the inner kinetochore/centromere, which results in large reductions in intra-kinetochore distance (delta) when viewed in lower dimensions. We show that swivel provides a mechanical flexibility that enables kinetochores at the periphery of the spindle to engage microtubules. Swivel rather than delta reduces as cells approach anaphase, suggesting an organisational change linked to checkpoint satisfaction and/or obligatory changes in kinetochore mechanochemistry may occur before dissolution of sister chromatid cohesion.

Article and author information

Author details

  1. Chris A Smith

    Centre for Mechanochemical Cell Biology, Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Andrew D McAinsh

    Centre for Mechanochemical Cell Biology, Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, United Kingdom
    For correspondence
    A.D.McAinsh@warwick.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6808-0711
  3. Nigel J Burroughs

    Warwick Systems Biology Centre, Mathematics Institute, University of Warwick, Coventry, United Kingdom
    For correspondence
    N.J.Burroughs@warwick.ac.uk
    Competing interests
    The authors declare that no competing interests exist.

Funding

Engineering and Physical Sciences Research Council (EP/F500378/1)

  • Chris A Smith

Wellcome (106151/Z/14/Z)

  • Andrew D McAinsh

Biotechnology and Biological Sciences Research Council (BB/I021353/1)

  • Andrew D McAinsh
  • Nigel J Burroughs

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Andrea Musacchio, Max Planck Institute of Molecular Physiology, Germany

Publication history

  1. Received: March 18, 2016
  2. Accepted: September 2, 2016
  3. Accepted Manuscript published: September 3, 2016 (version 1)
  4. Version of Record published: October 4, 2016 (version 2)

Copyright

© 2016, Smith et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,218
    Page views
  • 693
    Downloads
  • 21
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Chris A Smith
  2. Andrew D McAinsh
  3. Nigel J Burroughs
(2016)
Human kinetochores are swivel joints that mediate microtubule attachments
eLife 5:e16159.
https://doi.org/10.7554/eLife.16159
  1. Further reading

Further reading

    1. Cell Biology
    Rahul Bhattacharjee, Aaron R Hall ... Kathleen L Gould
    Research Article

    The F-BAR protein Cdc15 is essential for cytokinesis in Schizosaccharomyces pombe and plays a key role in attaching the cytokinetic ring (CR) to the plasma membrane (PM). Cdc15’s abilities to bind to the membrane and oligomerize via its F-BAR domain are inhibited by phosphorylation of its intrinsically disordered region (IDR). Multiple cell polarity kinases regulate Cdc15 IDR phosphostate, and of these the DYRK kinase Pom1 phosphorylation sites on Cdc15 have been shown in vivo to prevent CR formation at cell tips. Here, we compared the ability of Pom1 to control Cdc15 phosphostate and cortical localization to that of other Cdc15 kinases: Kin1, Pck1, and Shk1. We identified distinct but overlapping cohorts of Cdc15 phosphorylation sites targeted by each kinase, and the number of sites correlated with each kinases’ abilities to influence Cdc15 PM localization. Coarse-grained simulations predicted that cumulative IDR phosphorylation moves the IDRs of a dimer apart and toward the F-BAR tips. Further, simulations indicated that the overall negative charge of phosphorylation masks positively charged amino acids necessary for F-BAR oligomerization and membrane interaction. Finally, simulations suggested that dephosphorylated Cdc15 undergoes phase separation driven by IDR interactions. Indeed, dephosphorylated but not phosphorylated Cdc15 undergoes liquid–liquid phase separation to form droplets in vitro that recruit Cdc15 binding partners. In cells, Cdc15 phosphomutants also formed PM-bound condensates that recruit other CR components. Together, we propose that a threshold of Cdc15 phosphorylation by assorted kinases prevents Cdc15 condensation on the PM and antagonizes CR assembly.

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Marco Caligaris, Raffaele Nicastro ... Claudio De Virgilio
    Research Advance

    The AMP-activated protein kinase (AMPK) and the target of rapamycin complex 1 (TORC1) are central kinase modules of two opposing signaling pathways that control eukaryotic cell growth and metabolism in response to the availability of energy and nutrients. Accordingly, energy depletion activates AMPK to inhibit growth, while nutrients and high energy levels activate TORC1 to promote growth. Both in mammals and lower eukaryotes such as yeast, the AMPK and TORC1 pathways are wired to each other at different levels, which ensures homeostatic control of growth and metabolism. In this context, a previous study (Hughes Hallet et. al, 2015) reported that AMPK in yeast, i.e. Snf1, prevents the transient TORC1 reactivation during the early phase following acute glucose starvation, but the underlying mechanism has remained elusive. Using a combination of unbiased mass spectrometry (MS)-based phosphoproteomics, genetic, biochemical, and physiological experiments, we show here that Snf1 temporally maintains TORC1 inactive in glucose-starved cells primarily through the TORC1-regulatory protein Pib2. Our data, therefore, extend the function of Pib2 to a hub that integrates both glucose and, as reported earlier, glutamine signals to control TORC1. We further demonstrate that Snf1 phosphorylates the TORC1 effector kinase Sch9 within its N-terminal region and thereby antagonizes the phosphorylation of a C-terminal TORC1-target residue within Sch9 itself that is critical for its activity. The consequences of Snf1-mediated phosphorylation of Pib2 and Sch9 are physiologically additive and sufficient to explain the role of Snf1 in short-term inhibition of TORC1 in acutely glucose-starved cells.