NaLi-H1: A universal synthetic library of humanized nanobodies providing highly functional antibodies and intrabodies

  1. Sandrine Moutel
  2. Nicolas Bery
  3. Virginie Bernard
  4. Laura Keller
  5. Emilie Lemesre
  6. Ario de Marco
  7. Laetitia Ligat
  8. Jean-Christophe Rain
  9. Gilles Favre
  10. Aurélien Olichon  Is a corresponding author
  11. Franck Perez  Is a corresponding author
  1. Institut Curie, France
  2. Inserm, UMR 1037-CRCT, France
  3. CRCT, France
  4. Hybrigenics Service SA, France

Abstract

In vitro selection of antibodies allows to obtain highly functional binders, rapidly and at lower cost. Here, we describe the first fully synthetic phage display library of humanized llama single domain antibody (NaLi-H1: Nanobody Library Humanized 1). Based on a humanized synthetic single domain antibody (hs2dAb) scaffold optimized for intracellular stability, the highly diverse library provides high affinity binders without animal immunization. NaLi-H1 was screened following several selection schemes against various targets (Fluorescent proteins, actin, tubulin, p53, HP1). Conformation antibodies against active RHO GTPase were also obtained. Selected hs2dAb were used in various immunoassays and were often found to be functional intrabodies, enabling tracking or inhibition of endogenous targets. Functionalization of intrabodies allowed specific protein knockdown in living cells. Finally, direct selection against the surface of tumor cells produced hs2dAb directed against tumor-specific antigens further highlighting the potential use of this library for therapeutic applications.

Article and author information

Author details

  1. Sandrine Moutel

    Institut Curie, Paris, France
    Competing interests
    Sandrine Moutel, Co-inventor on a patent application (filled under ref: WO/2015/063331) that covers the hs2dAb scaffold and the commercial use of the library. The library has been licensed to Hybrigenics Service SA, which will perform screens on a fee-for-service basis.A consultant for Hybrigenics Service SA.
  2. Nicolas Bery

    Inserm, UMR 1037-CRCT, Toulouse, France
    Competing interests
    No competing interests declared.
  3. Virginie Bernard

    Institut Curie, Paris, France
    Competing interests
    No competing interests declared.
  4. Laura Keller

    Inserm, UMR 1037-CRCT, Toulouse, France
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1786-9760
  5. Emilie Lemesre

    Institut Curie, Paris, France
    Competing interests
    No competing interests declared.
  6. Ario de Marco

    Institut Curie, Paris, France
    Competing interests
    No competing interests declared.
  7. Laetitia Ligat

    plateau de protéomique, CRCT, Toulouse, France
    Competing interests
    No competing interests declared.
  8. Jean-Christophe Rain

    Hybrigenics Service SA, Paris, France
    Competing interests
    Jean-Christophe Rain, Employed by, and a stockholder in, Hybrigenics Service SA.
  9. Gilles Favre

    Inserm, UMR 1037-CRCT, Toulouse, France
    Competing interests
    No competing interests declared.
  10. Aurélien Olichon

    Inserm, UMR 1037-CRCT, Toulouse, France
    For correspondence
    aurelien.olichon@inserm.fr
    Competing interests
    Aurélien Olichon, Co-inventor on a patent application (filled under ref: WO/2015/063331) that covers the hs2dAb scaffold and the commercial use of the library. The library has been licensed to Hybrigenics Service SA, which will perform screens on a fee-for-service basis.
  11. Franck Perez

    Institut Curie, Paris, France
    For correspondence
    Franck.Perez@curie.fr
    Competing interests
    Franck Perez, Co-inventor on a patent application (filled under ref: WO/2015/063331) that covers the hs2dAb scaffold and the commercial use of the library. The library has been licensed to Hybrigenics Service SA, which will perform screens on a fee-for-service basis.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9129-9401

Funding

Institut Curie

  • Sandrine Moutel
  • Virginie Bernard
  • Ario de Marco
  • Franck Perez

Centre National de la Recherche Scientifique

  • Sandrine Moutel
  • Franck Perez

Institut National de la Santé et de la Recherche Médicale

  • Nicolas Bery
  • Laura Keller
  • Laetitia Ligat
  • Gilles Favre
  • Aurélien Olichon

Agence Nationale de la Recherche (ANR-09-BIOT-05)

  • Sandrine Moutel
  • Jean-Christophe Rain
  • Franck Perez

Institut National de la Santé et de la Recherche Médicale (ITS-201103)

  • Ario de Marco
  • Franck Perez

Fondation pour la Recherche Médicale (DEQ20120323723)

  • Franck Perez

Groupe de Recherche of the Claudius Regaud Institute

  • Gilles Favre
  • Aurélien Olichon

LABEX CellTisPhyBio (11-LBX-0038)

  • Sandrine Moutel
  • Virginie Bernard
  • Ario de Marco
  • Franck Perez

IDEX Paris Sciences Lettres (ANR-10-IDEX-0001-02 PSL)

  • Sandrine Moutel
  • Virginie Bernard
  • Ario de Marco
  • Franck Perez

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Anna Akhmanova, Utrecht University, Netherlands

Publication history

  1. Received: March 20, 2016
  2. Accepted: July 18, 2016
  3. Accepted Manuscript published: July 19, 2016 (version 1)
  4. Version of Record published: August 15, 2016 (version 2)

Copyright

© 2016, Moutel et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 20,058
    Page views
  • 3,819
    Downloads
  • 178
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sandrine Moutel
  2. Nicolas Bery
  3. Virginie Bernard
  4. Laura Keller
  5. Emilie Lemesre
  6. Ario de Marco
  7. Laetitia Ligat
  8. Jean-Christophe Rain
  9. Gilles Favre
  10. Aurélien Olichon
  11. Franck Perez
(2016)
NaLi-H1: A universal synthetic library of humanized nanobodies providing highly functional antibodies and intrabodies
eLife 5:e16228.
https://doi.org/10.7554/eLife.16228

Further reading

    1. Cell Biology
    2. Neuroscience
    Meghan E Wynne, Oluwaseun Ogunbona ... Victor Faundez
    Research Article Updated

    Mitochondria influence cellular function through both cell-autonomous and non-cell autonomous mechanisms, such as production of paracrine and endocrine factors. Here, we demonstrate that mitochondrial regulation of the secretome is more extensive than previously appreciated, as both genetic and pharmacological disruption of the electron transport chain caused upregulation of the Alzheimer’s disease risk factor apolipoprotein E (APOE) and other secretome components. Indirect disruption of the electron transport chain by gene editing of SLC25A mitochondrial membrane transporters as well as direct genetic and pharmacological disruption of either complexes I, III, or the copper-containing complex IV of the electron transport chain elicited upregulation of APOE transcript, protein, and secretion, up to 49-fold. These APOE phenotypes were robustly expressed in diverse cell types and iPSC-derived human astrocytes as part of an inflammatory gene expression program. Moreover, age- and genotype-dependent decline in brain levels of respiratory complex I preceded an increase in APOE in the 5xFAD mouse model. We propose that mitochondria act as novel upstream regulators of APOE-dependent cellular processes in health and disease.

    1. Cell Biology
    Ignacio Bravo-Plaza, Victor G Tagua ... Miguel A Peñalva
    Research Article

    Uso1/p115 and RAB1 tether ER-derived vesicles to the Golgi. Uso1/p115 contains a globular-head-domain (GHD), a coiled-coil (CC) mediating dimerization/tethering and a C-terminal region (CTR) interacting with golgins. Uso1/p115 is recruited to vesicles by RAB1. Genetic studies placed Uso1 paradoxically acting upstream of, or in conjunction with RAB1 (Sapperstein et al., 1996). We selected two missense mutations in uso1 resulting in E6K and G540S in the GHD that rescued lethality of rab1-deficient Aspergillus nidulans. The mutations are phenotypically additive, their combination suppressing the complete absence of RAB1, which emphasizes the key physiological role of the GHD. In living hyphae Uso1 recurs on puncta (60 sec half-life) colocalizing partially with the Golgi markers RAB1, Sed5 and GeaA/Gea1/Gea2, and totally with the retrograde cargo receptor Rer1, consistent with Uso1 dwelling in a very early Golgi compartment from which ER residents reaching the Golgi recycled back to the ER. Localization of Uso1, but not of Uso1E6K/G540S, to puncta is abolished by compromising RAB1 function, indicating that E6K/G540S creates interactions bypassing RAB1. That Uso1 delocalization correlates with a decrease in the number of Gea1 cisternae supports that Uso1-and-Rer1-containing puncta are where the protein exerts its physiological role. In S-tag-coprecipitation experiments Uso1 is an associate of the Sed5/Bos1/Bet1/Sec22 SNARE complex zippering vesicles with the Golgi, with Uso1E6K/G540S showing stronger association. Using purified proteins, we show that Bos1 and Bet1 bind the Uso1 GHD directly. However, Bet1 is a strong E6K/G540S-independent binder, whereas Bos1 is weaker but becomes as strong as Bet1 when the GHD carries E6K/G540S. G540S alone markedly increases GHD binding to Bos1, whereas E6K causes a weaker effect, correlating with their phenotypic contributions. AlphaFold2 predicts that G540S increases binding of the GHD to the Bos1 Habc domain. In contrast, E6K lies in an N-terminal, potentially alpha-helical, region that sensitive genetic tests indicate as required for full Uso1 function. Remarkably, this region is at the end of the GHD basket opposite to the end predicted to interact with Bos1. We show that unlike dimeric full-length and CTR∆ Uso1 proteins, the GHD lacking the CC/CTR dimerization domain, whether originating from bacteria or Aspergillus extracts and irrespective of whether it carries or not E6K/G540S, would appear to be monomeric. With the finding that overexpression of E6K/G540S and wild-type GHD complement uso1∆, our data indicate that the GHD monomer is capable of providing, at least partially, the essential Uso1 functions, and that long-range tethering activity is dispensable. Rather, these findings strongly suggest that the essential role of Uso1 involves the regulation of SNAREs.