NaLi-H1: A universal synthetic library of humanized nanobodies providing highly functional antibodies and intrabodies

  1. Sandrine Moutel
  2. Nicolas Bery
  3. Virginie Bernard
  4. Laura Keller
  5. Emilie Lemesre
  6. Ario de Marco
  7. Laetitia Ligat
  8. Jean-Christophe Rain
  9. Gilles Favre
  10. Aurélien Olichon  Is a corresponding author
  11. Franck Perez  Is a corresponding author
  1. Institut Curie, France
  2. Inserm, UMR 1037-CRCT, France
  3. CRCT, France
  4. Hybrigenics Service SA, France

Abstract

In vitro selection of antibodies allows to obtain highly functional binders, rapidly and at lower cost. Here, we describe the first fully synthetic phage display library of humanized llama single domain antibody (NaLi-H1: Nanobody Library Humanized 1). Based on a humanized synthetic single domain antibody (hs2dAb) scaffold optimized for intracellular stability, the highly diverse library provides high affinity binders without animal immunization. NaLi-H1 was screened following several selection schemes against various targets (Fluorescent proteins, actin, tubulin, p53, HP1). Conformation antibodies against active RHO GTPase were also obtained. Selected hs2dAb were used in various immunoassays and were often found to be functional intrabodies, enabling tracking or inhibition of endogenous targets. Functionalization of intrabodies allowed specific protein knockdown in living cells. Finally, direct selection against the surface of tumor cells produced hs2dAb directed against tumor-specific antigens further highlighting the potential use of this library for therapeutic applications.

Article and author information

Author details

  1. Sandrine Moutel

    Institut Curie, Paris, France
    Competing interests
    Sandrine Moutel, Co-inventor on a patent application (filled under ref: WO/2015/063331) that covers the hs2dAb scaffold and the commercial use of the library. The library has been licensed to Hybrigenics Service SA, which will perform screens on a fee-for-service basis.A consultant for Hybrigenics Service SA.
  2. Nicolas Bery

    Inserm, UMR 1037-CRCT, Toulouse, France
    Competing interests
    No competing interests declared.
  3. Virginie Bernard

    Institut Curie, Paris, France
    Competing interests
    No competing interests declared.
  4. Laura Keller

    Inserm, UMR 1037-CRCT, Toulouse, France
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1786-9760
  5. Emilie Lemesre

    Institut Curie, Paris, France
    Competing interests
    No competing interests declared.
  6. Ario de Marco

    Institut Curie, Paris, France
    Competing interests
    No competing interests declared.
  7. Laetitia Ligat

    plateau de protéomique, CRCT, Toulouse, France
    Competing interests
    No competing interests declared.
  8. Jean-Christophe Rain

    Hybrigenics Service SA, Paris, France
    Competing interests
    Jean-Christophe Rain, Employed by, and a stockholder in, Hybrigenics Service SA.
  9. Gilles Favre

    Inserm, UMR 1037-CRCT, Toulouse, France
    Competing interests
    No competing interests declared.
  10. Aurélien Olichon

    Inserm, UMR 1037-CRCT, Toulouse, France
    For correspondence
    aurelien.olichon@inserm.fr
    Competing interests
    Aurélien Olichon, Co-inventor on a patent application (filled under ref: WO/2015/063331) that covers the hs2dAb scaffold and the commercial use of the library. The library has been licensed to Hybrigenics Service SA, which will perform screens on a fee-for-service basis.
  11. Franck Perez

    Institut Curie, Paris, France
    For correspondence
    Franck.Perez@curie.fr
    Competing interests
    Franck Perez, Co-inventor on a patent application (filled under ref: WO/2015/063331) that covers the hs2dAb scaffold and the commercial use of the library. The library has been licensed to Hybrigenics Service SA, which will perform screens on a fee-for-service basis.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9129-9401

Funding

Institut Curie

  • Sandrine Moutel
  • Virginie Bernard
  • Ario de Marco
  • Franck Perez

Centre National de la Recherche Scientifique

  • Sandrine Moutel
  • Franck Perez

Institut National de la Santé et de la Recherche Médicale

  • Nicolas Bery
  • Laura Keller
  • Laetitia Ligat
  • Gilles Favre
  • Aurélien Olichon

Agence Nationale de la Recherche (ANR-09-BIOT-05)

  • Sandrine Moutel
  • Jean-Christophe Rain
  • Franck Perez

Institut National de la Santé et de la Recherche Médicale (ITS-201103)

  • Ario de Marco
  • Franck Perez

Fondation pour la Recherche Médicale (DEQ20120323723)

  • Franck Perez

Groupe de Recherche of the Claudius Regaud Institute

  • Gilles Favre
  • Aurélien Olichon

LABEX CellTisPhyBio (11-LBX-0038)

  • Sandrine Moutel
  • Virginie Bernard
  • Ario de Marco
  • Franck Perez

IDEX Paris Sciences Lettres (ANR-10-IDEX-0001-02 PSL)

  • Sandrine Moutel
  • Virginie Bernard
  • Ario de Marco
  • Franck Perez

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2016, Moutel et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 23,570
    views
  • 4,383
    downloads
  • 241
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sandrine Moutel
  2. Nicolas Bery
  3. Virginie Bernard
  4. Laura Keller
  5. Emilie Lemesre
  6. Ario de Marco
  7. Laetitia Ligat
  8. Jean-Christophe Rain
  9. Gilles Favre
  10. Aurélien Olichon
  11. Franck Perez
(2016)
NaLi-H1: A universal synthetic library of humanized nanobodies providing highly functional antibodies and intrabodies
eLife 5:e16228.
https://doi.org/10.7554/eLife.16228

Share this article

https://doi.org/10.7554/eLife.16228

Further reading

    1. Cell Biology
    Jingjing Li, Xinyue Wang ... Vincent Archambault
    Research Article

    In animals, mitosis involves the breakdown of the nucleus. The reassembly of a nucleus after mitosis requires the reformation of the nuclear envelope around a single mass of chromosomes. This process requires Ankle2 (also known as LEM4 in humans) which interacts with PP2A and promotes the function of the Barrier-to-Autointegration Factor (BAF). Upon dephosphorylation, BAF dimers cross-bridge chromosomes and bind lamins and transmembrane proteins of the reassembling nuclear envelope. How Ankle2 functions in mitosis is incompletely understood. Using a combination of approaches in Drosophila, along with structural modeling, we provide several lines of evidence that suggest that Ankle2 is a regulatory subunit of PP2A, explaining how it promotes BAF dephosphorylation. In addition, we discovered that Ankle2 interacts with the endoplasmic reticulum protein Vap33, which is required for Ankle2 localization at the reassembling nuclear envelope during telophase. We identified the interaction sites of PP2A and Vap33 on Ankle2. Through genetic rescue experiments, we show that the Ankle2/PP2A interaction is essential for the function of Ankle2 in nuclear reassembly and that the Ankle2/Vap33 interaction also promotes this process. Our study sheds light on the molecular mechanisms of post-mitotic nuclear reassembly and suggests that the endoplasmic reticulum is not merely a source of membranes in the process, but also provides localized enzymatic activity.

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Bhumil Patel, Maryke Grobler ... Needhi Bhalla
    Research Article

    Meiotic crossover recombination is essential for both accurate chromosome segregation and the generation of new haplotypes for natural selection to act upon. This requirement is known as crossover assurance and is one example of crossover control. While the conserved role of the ATPase, PCH-2, during meiotic prophase has been enigmatic, a universal phenotype when pch-2 or its orthologs are mutated is a change in the number and distribution of meiotic crossovers. Here, we show that PCH-2 controls the number and distribution of crossovers by antagonizing their formation. This antagonism produces different effects at different stages of meiotic prophase: early in meiotic prophase, PCH-2 prevents double-strand breaks from becoming crossover-eligible intermediates, limiting crossover formation at sites of initial double-strand break formation and homolog interactions. Later in meiotic prophase, PCH-2 winnows the number of crossover-eligible intermediates, contributing to the designation of crossovers and ultimately, crossover assurance. We also demonstrate that PCH-2 accomplishes this regulation through the meiotic HORMAD, HIM-3. Our data strongly support a model in which PCH-2’s conserved role is to remodel meiotic HORMADs throughout meiotic prophase to destabilize crossover-eligible precursors and coordinate meiotic recombination with synapsis, ensuring the progressive implementation of meiotic recombination and explaining its function in the pachytene checkpoint and crossover control.