Abstract

In yeast and humans, previous experiences can lead to epigenetic transcriptional memory: repressed genes that exhibit mitotically heritable changes in chromatin structure and promoter recruitment of poised RNA polymerase II preinitiation complex (RNAPII PIC), which enhances future reactivation. Here, we show that INO1 memory in yeast is initiated by binding of the Sfl1 transcription factor to the cis-acting Memory Recruitment Sequence, targeting INO1 to the nuclear periphery. Memory requires a remodeled form of the Set1/COMPASS methyltransferase lacking Spp1, which dimethylates histone H3 lysine 4 (H3K4me2). H3K4me2 recruits the SET3C complex, which plays an essential role in maintaining this mark. Finally, while active INO1 is associated with Cdk8- Mediator, during memory, Cdk8+ Mediator recruits poised RNAPII PIC lacking the Kin28 CTD kinase. Aspects of this mechanism are generalizable to yeast and conserved in human cells. Thus, COMPASS and Mediator are repurposed to promote epigenetic transcriptional poising by a highly conserved mechanism.

Article and author information

Author details

  1. Agustina D'Urso

    Department of Molecular Biosciences, Northwestern University, Evanston, United States
    Competing interests
    No competing interests declared.
  2. Yoh-hei Takahashi

    Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, United States
    Competing interests
    No competing interests declared.
  3. Bin Xiong

    Department of Statistics, Northwestern University, Evanston, United States
    Competing interests
    No competing interests declared.
  4. Jessica Marone

    Department of Molecular Biosciences, Northwestern University, Evanston, United States
    Competing interests
    No competing interests declared.
  5. Robert Coukos

    Department of Molecular Biosciences, Northwestern University, Evanston, United States
    Competing interests
    No competing interests declared.
  6. Carlo Randise-Hinchliff

    Department of Molecular Biosciences, Northwestern University, Evanston, United States
    Competing interests
    No competing interests declared.
  7. Ji-Ping Wang

    Department of Statistics, Northwestern University, Evanston, United States
    Competing interests
    No competing interests declared.
  8. Ali Shilatifard

    Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, United States
    Competing interests
    Ali Shilatifard, Reviewing editor, eLife.
  9. Jason H Brickner

    Department of Molecular Biosciences, Northwestern University, Evanston, United States
    For correspondence
    j-brickner@northwestern.edu
    Competing interests
    No competing interests declared.

Copyright

© 2016, D'Urso et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,858
    views
  • 1,303
    downloads
  • 104
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Agustina D'Urso
  2. Yoh-hei Takahashi
  3. Bin Xiong
  4. Jessica Marone
  5. Robert Coukos
  6. Carlo Randise-Hinchliff
  7. Ji-Ping Wang
  8. Ali Shilatifard
  9. Jason H Brickner
(2016)
Set1/COMPASS and Mediator are repurposed to promote epigenetic transcriptional memory
eLife 5:e16691.
https://doi.org/10.7554/eLife.16691

Share this article

https://doi.org/10.7554/eLife.16691

Further reading

    1. Cell Biology
    Yue Miao, Yongtao Du ... Mei Ding
    Research Article

    The spatiotemporal transition of small GTPase Rab5 to Rab7 is crucial for early-to-late endosome maturation, yet the precise mechanism governing Rab5-to-Rab7 switching remains elusive. USP8, a ubiquitin-specific protease, plays a prominent role in the endosomal sorting of a wide range of transmembrane receptors and is a promising target in cancer therapy. Here, we identified that USP8 is recruited to Rab5-positive carriers by Rabex5, a guanine nucleotide exchange factor (GEF) for Rab5. The recruitment of USP8 dissociates Rabex5 from early endosomes (EEs) and meanwhile promotes the recruitment of the Rab7 GEF SAND-1/Mon1. In USP8-deficient cells, the level of active Rab5 is increased, while the Rab7 signal is decreased. As a result, enlarged EEs with abundant intraluminal vesicles accumulate and digestive lysosomes are rudimentary. Together, our results reveal an important and unexpected role of a deubiquitinating enzyme in endosome maturation.

    1. Cancer Biology
    2. Cell Biology
    Kourosh Hayatigolkhatmi, Chiara Soriani ... Simona Rodighiero
    Tools and Resources

    Understanding the cell cycle at the single-cell level is crucial for cellular biology and cancer research. While current methods using fluorescent markers have improved the study of adherent cells, non-adherent cells remain challenging. In this study, we addressed this gap by combining a specialized surface to enhance cell attachment, the FUCCI(CA)2 sensor, an automated image analysis pipeline, and a custom machine learning algorithm. This approach enabled precise measurement of cell cycle phase durations in non-adherent cells. This method was validated in acute myeloid leukemia cell lines NB4 and Kasumi-1, which have unique cell cycle characteristics, and we tested the impact of cell cycle-modulating drugs on NB4 cells. Our cell cycle analysis system, which is also compatible with adherent cells, is fully automated and freely available, providing detailed insights from hundreds of cells under various conditions. This report presents a valuable tool for advancing cancer research and drug development by enabling comprehensive, automated cell cycle analysis in both adherent and non-adherent cells.