1. Cell Biology
  2. Chromosomes and Gene Expression
Download icon

Set1/COMPASS and Mediator are repurposed to promote epigenetic transcriptional memory

Research Article
  • Cited 66
  • Views 4,809
  • Annotations
Cite this article as: eLife 2016;5:e16691 doi: 10.7554/eLife.16691

Abstract

In yeast and humans, previous experiences can lead to epigenetic transcriptional memory: repressed genes that exhibit mitotically heritable changes in chromatin structure and promoter recruitment of poised RNA polymerase II preinitiation complex (RNAPII PIC), which enhances future reactivation. Here, we show that INO1 memory in yeast is initiated by binding of the Sfl1 transcription factor to the cis-acting Memory Recruitment Sequence, targeting INO1 to the nuclear periphery. Memory requires a remodeled form of the Set1/COMPASS methyltransferase lacking Spp1, which dimethylates histone H3 lysine 4 (H3K4me2). H3K4me2 recruits the SET3C complex, which plays an essential role in maintaining this mark. Finally, while active INO1 is associated with Cdk8- Mediator, during memory, Cdk8+ Mediator recruits poised RNAPII PIC lacking the Kin28 CTD kinase. Aspects of this mechanism are generalizable to yeast and conserved in human cells. Thus, COMPASS and Mediator are repurposed to promote epigenetic transcriptional poising by a highly conserved mechanism.

Article and author information

Author details

  1. Agustina D'Urso

    Department of Molecular Biosciences, Northwestern University, Evanston, United States
    Competing interests
    No competing interests declared.
  2. Yoh-hei Takahashi

    Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, United States
    Competing interests
    No competing interests declared.
  3. Bin Xiong

    Department of Statistics, Northwestern University, Evanston, United States
    Competing interests
    No competing interests declared.
  4. Jessica Marone

    Department of Molecular Biosciences, Northwestern University, Evanston, United States
    Competing interests
    No competing interests declared.
  5. Robert Coukos

    Department of Molecular Biosciences, Northwestern University, Evanston, United States
    Competing interests
    No competing interests declared.
  6. Carlo Randise-Hinchliff

    Department of Molecular Biosciences, Northwestern University, Evanston, United States
    Competing interests
    No competing interests declared.
  7. Ji-Ping Wang

    Department of Statistics, Northwestern University, Evanston, United States
    Competing interests
    No competing interests declared.
  8. Ali Shilatifard

    Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, United States
    Competing interests
    Ali Shilatifard, Reviewing editor, eLife.
  9. Jason H Brickner

    Department of Molecular Biosciences, Northwestern University, Evanston, United States
    For correspondence
    j-brickner@northwestern.edu
    Competing interests
    No competing interests declared.

Reviewing Editor

  1. Alan G Hinnebusch, National Institute of Child Health and Human Development, United States

Publication history

  1. Received: April 6, 2016
  2. Accepted: June 22, 2016
  3. Accepted Manuscript published: June 23, 2016 (version 1)
  4. Version of Record published: July 19, 2016 (version 2)

Copyright

© 2016, D'Urso et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,809
    Page views
  • 1,173
    Downloads
  • 66
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Cell Biology
    2. Plant Biology
    Julien Gronnier et al.
    Research Article Updated

    Spatial partitioning is a propensity of biological systems orchestrating cell activities in space and time. The dynamic regulation of plasma membrane nano-environments has recently emerged as a key fundamental aspect of plant signaling, but the molecular components governing it are still mostly unclear. The receptor kinase FERONIA (FER) controls ligand-induced complex formation of the immune receptor kinase FLAGELLIN SENSING 2 (FLS2) with its co-receptor BRASSINOSTEROID-INSENSITIVE 1-ASSOCIATED KINASE 1 (BAK1), and perception of the endogenous peptide hormone RAPID ALKALANIZATION FACTOR 23 (RALF23) by FER inhibits immunity. Here, we show that FER regulates the plasma membrane nanoscale organization of FLS2 and BAK1. Our study demonstrates that akin to FER, leucine-rich repeat (LRR) extensin proteins (LRXs) contribute to RALF23 responsiveness and regulate BAK1 nanoscale organization and immune signaling. Furthermore, RALF23 perception leads to rapid modification of FLS2 and BAK1 nanoscale organization, and its inhibitory activity on immune signaling relies on FER kinase activity. Our results suggest that perception of RALF peptides by FER and LRXs actively modulates plasma membrane nanoscale organization to regulate cell surface signaling by other ligand-binding receptor kinases.

    1. Cell Biology
    Paul M Wassarman, Eveline S Litscher
    Review Article

    Fertility in female mammals, including mice and humans, is dependent on the presence of a zona pellucida (ZP) around growing oocytes and unfertilized eggs. A ZP is required to stabilize contacts between oocyte microvilli and follicle cell projections that traverse the ZP to form gap junctions that support the health of growing oocytes and developing follicles. In the absence of a ZP, due to inactivation or mutation of genes encoding ZP proteins, there is a loss of contacts between growing oocytes and neighboring follicle cells and a concomitant reduction in the production of ovulated eggs that results in female infertility.