A computational approach to map nucleosome positions and alternative chromatin states with base pair resolution

  1. Xu Zhou
  2. Alexander W Blocker
  3. Edoardo M Airoldi  Is a corresponding author
  4. Erin K O'Shea  Is a corresponding author
  1. Yale School of Medicine, United States
  2. Harvard University, United States
  3. Howard Hughes Medical Institute, Harvard University, United States

Abstract

Understanding chromatin function requires knowing the precise location of nucleosomes. MNase-seq methods have been widely applied to characterize nucleosome organization in vivo, but generally lack the accuracy to determine the precise nucleosome positions. Here we develop a computational approach leveraging digestion variability to determine nucleosome positions at base-pair resolution from MNase-seq data. We generate a variability template as a simple error model for how MNase digestion affects mapping of individual nucleosomes. Applied to both yeast and human cells, this analysis reveals that alternatively positioned nucleosomes are prevalent and create significant heterogeneity in a cell population. We show that the periodic occurrences of dinucleotide sequences relative to nucleosome dyads can be directly determined from genome-wide nucleosome positions from MNase-seq. Alternatively positioned nucleosomes near transcription start sites likely represent different states of promoter nucleosomes during transcription initiation. Our method can be applied to map nucleosome positions in diverse organisms at base-pair resolution.

Data availability

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Xu Zhou

    Yale School of Medicine, New Haven, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1692-6823
  2. Alexander W Blocker

    Department of Statistics, Harvard University, Cambridge, United States
    Competing interests
    No competing interests declared.
  3. Edoardo M Airoldi

    Department of Statistics, Harvard University, Cambridge, United States
    For correspondence
    airoldi@fas.harvard.edu
    Competing interests
    No competing interests declared.
  4. Erin K O'Shea

    Faculty of Arts and Sciences Center for Systems Biology, Howard Hughes Medical Institute, Harvard University, Cambridge, United States
    For correspondence
    osheae@hhmi.org
    Competing interests
    Erin K O'Shea, President at the Howard Hughes Medical Institute, one of the three founding funders of eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2649-1018

Funding

Howard Hughes Medical Institute

  • Xu Zhou
  • Erin K O'Shea

National Institute of General Medical Sciences (GM-096193)

  • Alexander W Blocker
  • Edoardo M Airoldi

Alfred P. Sloan Foundation

  • Alexander W Blocker
  • Edoardo M Airoldi

Jane Coffin Childs Memorial Fund for Medical Research

  • Xu Zhou

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Asifa Akhtar, Max Planck Institute for Immunobiology and Epigenetics, Germany

Version history

  1. Received: April 15, 2016
  2. Accepted: September 13, 2016
  3. Accepted Manuscript published: September 13, 2016 (version 1)
  4. Version of Record published: September 30, 2016 (version 2)

Copyright

© 2016, Zhou et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,315
    views
  • 861
    downloads
  • 19
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Xu Zhou
  2. Alexander W Blocker
  3. Edoardo M Airoldi
  4. Erin K O'Shea
(2016)
A computational approach to map nucleosome positions and alternative chromatin states with base pair resolution
eLife 5:e16970.
https://doi.org/10.7554/eLife.16970

Share this article

https://doi.org/10.7554/eLife.16970

Further reading

    1. Biochemistry and Chemical Biology
    2. Computational and Systems Biology
    Richard Sejour, Janet Leatherwood ... Bruce Futcher
    Research Article

    Previously, Tuller et al. found that the first 30–50 codons of the genes of yeast and other eukaryotes are slightly enriched for rare codons. They argued that this slowed translation, and was adaptive because it queued ribosomes to prevent collisions. Today, the translational speeds of different codons are known, and indeed rare codons are translated slowly. We re-examined this 5’ slow translation ‘ramp.’ We confirm that 5’ regions are slightly enriched for rare codons; in addition, they are depleted for downstream Start codons (which are fast), with both effects contributing to slow 5’ translation. However, we also find that the 5’ (and 3’) ends of yeast genes are poorly conserved in evolution, suggesting that they are unstable and turnover relatively rapidly. When a new 5’ end forms de novo, it is likely to include codons that would otherwise be rare. Because evolution has had a relatively short time to select against these codons, 5’ ends are typically slightly enriched for rare, slow codons. Opposite to the expectation of Tuller et al., we show by direct experiment that genes with slowly translated codons at the 5’ end are expressed relatively poorly, and that substituting faster synonymous codons improves expression. Direct experiment shows that slow codons do not prevent downstream ribosome collisions. Further informatic studies suggest that for natural genes, slow 5’ ends are correlated with poor gene expression, opposite to the expectation of Tuller et al. Thus, we conclude that slow 5’ translation is a ‘spandrel’--a non-adaptive consequence of something else, in this case, the turnover of 5’ ends in evolution, and it does not improve translation.

    1. Computational and Systems Biology
    Hedi Chen, Xiaoyu Fan ... Boxue Tian
    Research Article

    Accurate prediction of the structurally diverse complementarity determining region heavy chain 3 (CDR-H3) loop structure remains a primary and long-standing challenge for antibody modeling. Here, we present the H3-OPT toolkit for predicting the 3D structures of monoclonal antibodies and nanobodies. H3-OPT combines the strengths of AlphaFold2 with a pre-trained protein language model and provides a 2.24 Å average RMSD between predicted and experimentally determined CDR-H3 loops, thus outperforming other current computational methods in our non-redundant high-quality dataset. The model was validated by experimentally solving three structures of anti-VEGF nanobodies predicted by H3-OPT. We examined the potential applications of H3-OPT through analyzing antibody surface properties and antibody–antigen interactions. This structural prediction tool can be used to optimize antibody–antigen binding and engineer therapeutic antibodies with biophysical properties for specialized drug administration route.