A computational approach to map nucleosome positions and alternative chromatin states with base pair resolution

  1. Xu Zhou
  2. Alexander W Blocker
  3. Edoardo M Airoldi  Is a corresponding author
  4. Erin K O'Shea  Is a corresponding author
  1. Yale School of Medicine, United States
  2. Harvard University, United States
  3. Howard Hughes Medical Institute, Harvard University, United States

Abstract

Understanding chromatin function requires knowing the precise location of nucleosomes. MNase-seq methods have been widely applied to characterize nucleosome organization in vivo, but generally lack the accuracy to determine the precise nucleosome positions. Here we develop a computational approach leveraging digestion variability to determine nucleosome positions at base-pair resolution from MNase-seq data. We generate a variability template as a simple error model for how MNase digestion affects mapping of individual nucleosomes. Applied to both yeast and human cells, this analysis reveals that alternatively positioned nucleosomes are prevalent and create significant heterogeneity in a cell population. We show that the periodic occurrences of dinucleotide sequences relative to nucleosome dyads can be directly determined from genome-wide nucleosome positions from MNase-seq. Alternatively positioned nucleosomes near transcription start sites likely represent different states of promoter nucleosomes during transcription initiation. Our method can be applied to map nucleosome positions in diverse organisms at base-pair resolution.

Data availability

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Xu Zhou

    Yale School of Medicine, New Haven, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1692-6823
  2. Alexander W Blocker

    Department of Statistics, Harvard University, Cambridge, United States
    Competing interests
    No competing interests declared.
  3. Edoardo M Airoldi

    Department of Statistics, Harvard University, Cambridge, United States
    For correspondence
    airoldi@fas.harvard.edu
    Competing interests
    No competing interests declared.
  4. Erin K O'Shea

    Faculty of Arts and Sciences Center for Systems Biology, Howard Hughes Medical Institute, Harvard University, Cambridge, United States
    For correspondence
    osheae@hhmi.org
    Competing interests
    Erin K O'Shea, President at the Howard Hughes Medical Institute, one of the three founding funders of eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2649-1018

Funding

Howard Hughes Medical Institute

  • Xu Zhou
  • Erin K O'Shea

National Institute of General Medical Sciences (GM-096193)

  • Alexander W Blocker
  • Edoardo M Airoldi

Alfred P. Sloan Foundation

  • Alexander W Blocker
  • Edoardo M Airoldi

Jane Coffin Childs Memorial Fund for Medical Research

  • Xu Zhou

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Asifa Akhtar, Max Planck Institute for Immunobiology and Epigenetics, Germany

Version history

  1. Received: April 15, 2016
  2. Accepted: September 13, 2016
  3. Accepted Manuscript published: September 13, 2016 (version 1)
  4. Version of Record published: September 30, 2016 (version 2)

Copyright

© 2016, Zhou et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,268
    views
  • 861
    downloads
  • 15
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Xu Zhou
  2. Alexander W Blocker
  3. Edoardo M Airoldi
  4. Erin K O'Shea
(2016)
A computational approach to map nucleosome positions and alternative chromatin states with base pair resolution
eLife 5:e16970.
https://doi.org/10.7554/eLife.16970

Share this article

https://doi.org/10.7554/eLife.16970

Further reading

    1. Computational and Systems Biology
    2. Genetics and Genomics
    Weichen Song, Yongyong Shi, Guan Ning Lin
    Tools and Resources

    We propose a new framework for human genetic association studies: at each locus, a deep learning model (in this study, Sei) is used to calculate the functional genomic activity score for two haplotypes per individual. This score, defined as the Haplotype Function Score (HFS), replaces the original genotype in association studies. Applying the HFS framework to 14 complex traits in the UK Biobank, we identified 3619 independent HFS–trait associations with a significance of p < 5 × 10−8. Fine-mapping revealed 2699 causal associations, corresponding to a median increase of 63 causal findings per trait compared with single-nucleotide polymorphism (SNP)-based analysis. HFS-based enrichment analysis uncovered 727 pathway–trait associations and 153 tissue–trait associations with strong biological interpretability, including ‘circadian pathway-chronotype’ and ‘arachidonic acid-intelligence’. Lastly, we applied least absolute shrinkage and selection operator (LASSO) regression to integrate HFS prediction score with SNP-based polygenic risk scores, which showed an improvement of 16.1–39.8% in cross-ancestry polygenic prediction. We concluded that HFS is a promising strategy for understanding the genetic basis of human complex traits.

    1. Computational and Systems Biology
    Qianmu Yuan, Chong Tian, Yuedong Yang
    Tools and Resources

    Revealing protein binding sites with other molecules, such as nucleic acids, peptides, or small ligands, sheds light on disease mechanism elucidation and novel drug design. With the explosive growth of proteins in sequence databases, how to accurately and efficiently identify these binding sites from sequences becomes essential. However, current methods mostly rely on expensive multiple sequence alignments or experimental protein structures, limiting their genome-scale applications. Besides, these methods haven’t fully explored the geometry of the protein structures. Here, we propose GPSite, a multi-task network for simultaneously predicting binding residues of DNA, RNA, peptide, protein, ATP, HEM, and metal ions on proteins. GPSite was trained on informative sequence embeddings and predicted structures from protein language models, while comprehensively extracting residual and relational geometric contexts in an end-to-end manner. Experiments demonstrate that GPSite substantially surpasses state-of-the-art sequence-based and structure-based approaches on various benchmark datasets, even when the structures are not well-predicted. The low computational cost of GPSite enables rapid genome-scale binding residue annotations for over 568,000 sequences, providing opportunities to unveil unexplored associations of binding sites with molecular functions, biological processes, and genetic variants. The GPSite webserver and annotation database can be freely accessed at https://bio-web1.nscc-gz.cn/app/GPSite.