Integration of light and metabolic signals for stem cell activation at the shoot apical meristem

  1. Anne Pfeiffer
  2. Denis Janocha
  3. Yihan Dong
  4. Anna Medzihradszky
  5. Stefanie Schöne
  6. Gabor Daum
  7. Takuya Suzaki
  8. Joachim Forner
  9. Tobias Langenecker
  10. Eugen Rempel
  11. Markus Schmid
  12. Markus Wirtz
  13. Rüdiger Hell
  14. Jan U Lohmann  Is a corresponding author
  1. Heidelberg University, Germany
  2. University of Tsukuba, Japan
  3. Max Planck Institute for Developmental Biology, Germany
  4. Umeå University, Sweden

Abstract

A major feature of embryogenesis is the specification of stem cell systems, but in contrast to the situation in most animals, plant stem cells remain quiescent until the postembryonic phase of development. Here, we dissect how light and metabolic signals are integrated to overcome stem cell dormancy at the shoot apical meristem. We show on the one hand that light is able to activate expression of the stem cell inducer WUSCHEL independently of photosynthesis and that this likely involves inter-regional cytokinin signaling. Metabolic signals, on the other hand, are transduced to the meristem through activation of the TARGET OF RAPAMYCIN (TOR) kinase. Surprisingly, TOR is also required for light signal dependent stem cell activation. Thus, the TOR kinase acts as a central integrator of light and metabolic signals and a key regulator of stem cell activation at the shoot apex.

Article and author information

Author details

  1. Anne Pfeiffer

    Department of Stem Cell Biology, Heidelberg University, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Denis Janocha

    Department of Stem Cell Biology, Heidelberg University, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Yihan Dong

    Department of Molecular Plant Biology, Heidelberg University, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Anna Medzihradszky

    Department of Stem Cell Biology, Heidelberg University, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Stefanie Schöne

    Department of Stem Cell Biology, Heidelberg University, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Gabor Daum

    Department of Stem Cell Biology, Heidelberg University, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Takuya Suzaki

    Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
    Competing interests
    The authors declare that no competing interests exist.
  8. Joachim Forner

    Department of Stem Cell Biology, Heidelberg University, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  9. Tobias Langenecker

    Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  10. Eugen Rempel

    Department of Stem Cell Biology, Heidelberg University, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  11. Markus Schmid

    Umeå Plant Science Centre, Umeå University, Umeå, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  12. Markus Wirtz

    Department of Molecular Plant Biology, Heidelberg University, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  13. Rüdiger Hell

    Department of Molecular Plant Biology, Heidelberg University, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6238-4818
  14. Jan U Lohmann

    Department of Stem Cell Biology, Heidelberg University, Heidelberg, Germany
    For correspondence
    jan.lohmann@cos.uni-heidelberg.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3667-187X

Reviewing Editor

  1. Christian S Hardtke, University of Lausanne, Switzerland

Version history

  1. Received: April 17, 2016
  2. Accepted: July 9, 2016
  3. Accepted Manuscript published: July 11, 2016 (version 1)
  4. Accepted Manuscript updated: July 27, 2016 (version 2)
  5. Version of Record published: August 1, 2016 (version 3)

Copyright

© 2016, Pfeiffer et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 7,408
    Page views
  • 1,780
    Downloads
  • 141
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Anne Pfeiffer
  2. Denis Janocha
  3. Yihan Dong
  4. Anna Medzihradszky
  5. Stefanie Schöne
  6. Gabor Daum
  7. Takuya Suzaki
  8. Joachim Forner
  9. Tobias Langenecker
  10. Eugen Rempel
  11. Markus Schmid
  12. Markus Wirtz
  13. Rüdiger Hell
  14. Jan U Lohmann
(2016)
Integration of light and metabolic signals for stem cell activation at the shoot apical meristem
eLife 5:e17023.
https://doi.org/10.7554/eLife.17023

Share this article

https://doi.org/10.7554/eLife.17023

Further reading

    1. Developmental Biology
    2. Immunology and Inflammation
    Amir Hossein Kayvanjoo, Iva Splichalova ... Elvira Mass
    Research Article Updated

    During embryogenesis, the fetal liver becomes the main hematopoietic organ, where stem and progenitor cells as well as immature and mature immune cells form an intricate cellular network. Hematopoietic stem cells (HSCs) reside in a specialized niche, which is essential for their proliferation and differentiation. However, the cellular and molecular determinants contributing to this fetal HSC niche remain largely unknown. Macrophages are the first differentiated hematopoietic cells found in the developing liver, where they are important for fetal erythropoiesis by promoting erythrocyte maturation and phagocytosing expelled nuclei. Yet, whether macrophages play a role in fetal hematopoiesis beyond serving as a niche for maturing erythroblasts remains elusive. Here, we investigate the heterogeneity of macrophage populations in the murine fetal liver to define their specific roles during hematopoiesis. Using a single-cell omics approach combined with spatial proteomics and genetic fate-mapping models, we found that fetal liver macrophages cluster into distinct yolk sac-derived subpopulations and that long-term HSCs are interacting preferentially with one of the macrophage subpopulations. Fetal livers lacking macrophages show a delay in erythropoiesis and have an increased number of granulocytes, which can be attributed to transcriptional reprogramming and altered differentiation potential of long-term HSCs. Together, our data provide a detailed map of fetal liver macrophage subpopulations and implicate macrophages as part of the fetal HSC niche.

    1. Developmental Biology
    2. Neuroscience
    Smrithi Prem, Bharati Dev ... Emanuel DiCicco-Bloom
    Research Article Updated

    Autism spectrum disorder (ASD) is defined by common behavioral characteristics, raising the possibility of shared pathogenic mechanisms. Yet, vast clinical and etiological heterogeneity suggests personalized phenotypes. Surprisingly, our iPSC studies find that six individuals from two distinct ASD subtypes, idiopathic and 16p11.2 deletion, have common reductions in neural precursor cell (NPC) neurite outgrowth and migration even though whole genome sequencing demonstrates no genetic overlap between the datasets. To identify signaling differences that may contribute to these developmental defects, an unbiased phospho-(p)-proteome screen was performed. Surprisingly despite the genetic heterogeneity, hundreds of shared p-peptides were identified between autism subtypes including the mTOR pathway. mTOR signaling alterations were confirmed in all NPCs across both ASD subtypes, and mTOR modulation rescued ASD phenotypes and reproduced autism NPC-associated phenotypes in control NPCs. Thus, our studies demonstrate that genetically distinct ASD subtypes have common defects in neurite outgrowth and migration which are driven by the shared pathogenic mechanism of mTOR signaling dysregulation.